

Electroweak Physics at LHCb

第十届中国LHC物理会议 山东青岛 2024年11月14日

Outlines

Introduction

Recent LHC Electroweak results

- Weak mixing angle measurement
- Z boson property measurements
- W/Z rare decay search
- Prospects

O Summary

Better understanding of the SM

Challenging the SM

QCD

QED and Weak

Electroweak Physics

Better understanding of the SM

Challenging the SM

QCD

QED and Weak

Electroweak physics @LHC

Overview of CMS cross section results

Stringent tests on the SM!

Electroweak physics @LHCb: why?

Electroweak physics @LHCb: why?

Data collected in same period: ATLAS $Z \rightarrow \mu^+ \mu^-$ signal yeild is 65 times larger than that of LHCb

Unique acceptance of LHCb

The x value of interacting partons are correlated with the boson production

• Rapidity (y): $y = \frac{1}{2} ln \frac{x_1}{x_2}$

Large rapidity: either very large x or very small x

Unique acceptance of LHCb

The x value of interacting partons are correlated with the boson production

- Rapidity (y): $y = \frac{1}{2} ln \frac{x_1}{x_2}$
- Large rapidity: either very large x or very small x
- ATLAS/CMS and LHCb: complementary to each other

Unique acceptance of LHCb

The x value of interacting partons are correlated with the boson production

Rapidity (y): y = ¹/₂ ln ^{x₁}/_{x₂}
Large rapidity: either very large x or very small x

2023/04/16

ATLAS/CMS and LHCb: complementary to each other

LHC 7 TeV Kinematics

LHCb CDF/D0 HERA

Weak mixing angle

- Fundamental parameters of SM electroweak sector
- \bigcirc Couplings between fermions and Z boson: (V A)
 - Vector couplings: $V = I_3 2Qsin^2\theta_W$

• Axial-vector coupling: $A = I_3$

• In the tree level,
$$sin^2 \theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right)$$

- At higher order: $sin^2 \theta_W^{lept} = \kappa_f sin^2 \theta_W$
 - κ_f: a flavour dependent effetive scaling factor absorbing the higher order corrections

Well-known deviation

Well-known deviation

Excellent agreement between individual measurement and global fit

• Tension between A_{FB}^{b} and $A_{l}(SLD)$: ~3.2 σ

Precision weak mixing angle measurements from LEP and SLD

\bigcirc Other EW observables are within 2σ band

Extraction of $sin^2 \theta_W^{lept}$ $\bigcirc \frac{d\sigma}{dcos\theta^*} \propto 1 + cos^2\theta^* + \frac{8}{3}A_{fb}^{4\pi}cos\theta^*$ $\bigcirc \theta^*$ is the angle in Collins-Soper frame $\bigcirc A_{fb} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$, as a function of mass \bigcirc large $|cos\theta^*|$ are more influenced by changes in $sin^2 \theta_{eff}^{lept}$ \bigcirc small $|cos\theta^*|$ mostly dilute the measurement

$$\bigcirc \cos\theta^* \sim \tanh(|\Delta\eta|/2), \Delta\eta = \eta^- - \eta^+$$

- Forward range, $\cos\theta^* > 0$
- **B**ackward range, $\cos\theta^* < 0$

Extraction of $sin^2 \theta_W^{lept}$ $\bigcirc \frac{d\sigma}{d\cos\theta^*} \propto 1 + \cos^2\theta^* + \frac{8}{3}A_{fb}^{4\pi}\cos\theta^*$ $\bullet \theta^*$ is the angle in Collins-Soper frame • $A_{fb} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$, as a function of mass • large $|\cos\theta^*|$ are more influenced by changes in $\sin^2 \theta_{eff}^{lept}$ • small $|\cos\theta^*|$ mostly dilute the measurement $\bigcirc \cos\theta^* \sim \tanh(|\Delta\eta|/2), \Delta\eta = \eta^- - \eta^+$

- Forward range, $\cos\theta^* > 0$
- Backward range, $\cos\theta^* < 0$

2023/04/16

LHC electroweak physics and PDFs

16

Dilution effects

At the LHC, the direction of quark and anti-quark in each collision is unknow: use the p_z of Z boson

Charge Control Cont

- one larger x + one small x
- valence quark intends to have large x

At the LHC, the direction of quark and anti-quark in each collision is unknow: use the p_z of Z boson

Charge Control Cont

Dilution effects

- one larger x + one small x
- valence quark intends to have large x

Smaller statistics ($\sim 1/65$), but **similar** sensitivity as ATLAS/CMS!

Selected events

• Dataset: 2016+2017+2018 *pp* collision data at $\sqrt{s} = 13$ TeV, $\mathcal{L} = 5.3$ fb⁻¹

- Identified single muon trigger, in a fiducial region
 - 2.0 < η_{μ} < 4.5, $p_{\rm T}^{\mu}$ > 20 GeV and 66 < $M_{\mu\mu}$ < 116 GeV
- **O Background contributions:**
 - Heavy-flavour: suppressed to the percent level, the muon impact parameter requirement
 - Hadronic background: suppressed to the percent level, an isolation requirement and muon track fit requirement

Roughly 860k events are selected for the measurement

Selected events

 \bigcirc Dataset: 2016+2017+2018 pp collision data at $\sqrt{s} = 13$ TeV, $\mathcal{L} = 5.3$ fb⁻¹

Identified single muon trigger, in a fiducial region

• 2.0 < η_{μ} < 4.5, $p_{\rm T}^{\mu}$ > 20 GeV and 66 < $M_{\mu\mu}$ < 116 GeV

Bset fit point

Measured result

0.23152 ± 0.00044 (stat.)

\pm 0.00005 (syst.) \pm 0.00022 (theory)

Theory uncertainty include PDF uncertainty, QCD and EW uncertainty

arXiv:2410.02502, accepted by JHEP

Measured result

Total uncertainty

 $\sin^2 \theta_{eff}^l$

Z production cross section measurement

- Dataset: 2016-2018, *pp* collision data @ 13 TeV, 5.1 fb⁻¹
- O Event Selections:
 - $Z \rightarrow \mu^+ \mu^-$ events, at lease one μ^+ must fire single muon trigger
 - 796k candidates

O Background contribution 1.5%

Heavy flavour; misidentified hadron;
Other physics process

μ	Z	
$p_{\rm T} > 20 {\rm GeV}/c$	$60 < M_{\mu^+\mu^-} < 120 \text{GeV}/c^2$	
$2 < \eta < 4.5$		
$\sigma_P/P < 10\%$		

JHEP 07 (2022) 26 23

Differential cross-section: 1D

Reasonable agreements between data and predictions

O Predictions are systematically smaller than the measured results in the lower rapidity region

Same behaviours are seen in 2015 LHCb data-set

JHEP 07 (2022) 26 24

Integrated cross-section

O Good agreement between data and predictions

JHEP 07 (2022) 26 25

LHCb 5.02 TeV measurement

2017 pp reference run data-set: 100 pb⁻¹ Same analysis framework as 13 TeV publication

Z angular coefficient measurement

 A₂ is sensitive to the Boer-Mulders transverse momentum dependent PDFs (TMD)

C LHCb Run-2 result:

- Low mass, middle mass and high mass region
- Study A_2 vs. $Z p_T$

Z boson p_T dependent results PRL 129 (2022) 091801

- Measured results are at Born level in QED
- O Dominated uncertainty: statistical
- Compared with various predictions
 - POWHEG+PYTHIA
 - OYTurbo
 - RESBOS
 - PYTHIA+LHCb tune

Results in low $Z p_T$ region

PRL 129 (2022) 091801

O Use measured A₂ to probe Boer-Mulders TMD PDFs

- In different mass regions: 50-75, 75-105, 105-120 GeV/c²
- None of predictions include nonperturbative spin-momentum correlations

Results in low $Z p_T$ region

PRL 129 (2022) 091801

O Use measured A₂ to probe Boer-Mulders TMD PDFs

- In different mass regions: 50-75, 75-105, 105-120 GeV/c²
- None of predictions include nonperturbative spin-momentum correlations

W/Z rare decay

○ Very rare radiative decays of *W* and *Z* bosons

- Search for new physics
- A good probe for QCD factorization formalism

O SM branching fraction:

- $\circ \sim 10^{-6} 10^{-15}$
- enhanced in some NP models

Search for $W^{\pm} \rightarrow D_S^{\pm} \gamma$ and $Z \rightarrow D^0 \gamma$

O No significant peaking structure is found

 \bigcirc Set upper limit for $W^+ \rightarrow D_s^+ \gamma$ and $Z \rightarrow D^0 \gamma$

 $\begin{array}{rcl} \mathcal{B}(Z \to D^0 \gamma) &< 2.1 \times 10^{-3} \mbox{ at } 95\% \mbox{ C.L.}, \\ \mathcal{B}(W^+ \to D_s^+ \gamma) &< 6.5 \times 10^{-4} \mbox{ at } 95\% \mbox{ C.L.}, \end{array}$

Better upper limit from ATLAS PLB 855 (2024) 138762

CPC 47 (2023) 093002

Prospects: W mass

• W mass measurement:

- ① Cross checks between years, polarities, etc.; Selection validation and improvements
- 2 More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- In the second second
- **4** State-of-the-art modelling of boson production (PowPy \rightarrow DYTurbo up to N2LL)
- **(5)** New PDF sets (NNPDF4.0) \rightarrow Have feedback?

Goal: 20 MeV sensitivity

Prospects

Cross-section measurements:

• W Xsec (5.02 TeV, 13 TeV, 13.6 TeV), leptnoic WW, ZZ Xsec, DPS measurement

O Properties of EW boson:

• Mass of W/Z boson, W helicity, Z angular coefficient (Run-1/Run-3)

O Higgs/Jet measurements:

• $H \rightarrow bb/cc, W+Jet Xsec, semi-leptonic WW Xsec$

Top physics

Summary

 \bigcirc LHCb has an extensive programs on single W/Z boson production measurements

- Provide essential inputs for PDFs global fitting: unique acceptance
- Most of systematic uncertainties could be reduce to permil level
- O At LHCb, EW-scale analyses activity is a small group with a huge phase space to cover
 - Collaboration with theorists to make more impacts measurement with limited manpower
- O Run-3 data pp taking is done
 - A larger data-set, compared to Run-2

Summary

 \odot LHCb has an extensive programs on single W/Z boson production measurements

Provide essential inputs for PDFs global fitting: unique acceptance

- Most of systematic uncertainties could be reduce to permil level
- O At LHCb, EW-scale analyses activity is a small group with a huge phase space to cover

 Collaboration with theorists to make more impacts measurement with limited manpower

O Run-3 data pp taking is done

• A larger data-set, compared to Run-2

Need your inputs!

Backup

2023/04/16

LHC electroweak physics and PDFs

LHC measurements

Systematic uncertainties

- Cuminosity determination: 2%
- Tracking reconstruction: 0.47% for each muon

Source	$\Delta\sigma/\sigma$ [%]
Statistical	0.11
Background	0.06
Alignment & calibration	-
Efficiency	0.77
Closure	0.23
\mathbf{FSR}	0.15
Total Systematic (excl. lumi.)	0.82
Luminosity	2.00
Total	2.16