

University of Chinese Academy of Sciences

CP violation at LHCb

- Peilian Li (李佩莲)
- on behalf of the LHCb collaboration
- University of Chinese Academy of Sciences
 - 第十届中国LHC物理会议 (CLHCP2024)
 - 2024.11.15, Qingdao

Outline

Introduction

Recent results for

- CKM angle γ and $\beta_{(s)}$
- Direct CPV in *B* meson
- CPV in Baryons
- CPV in Charm (back up)

Summary

Disclaimer: many new and interesting results, only a few selected More dedicated talks in parallel sessions and <u>public page</u>

Matter and anti-matter asymmetry

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

Rev. Mod. Phys. 88(2016)015004 <u>arXiv: 1801.10059</u>

CKM matrix

Indirect search for New Physics

• Sensitivity to New Physics scale much higher than direct search: $1 \sim 10^4$ GeV

$$\mathcal{A}(\psi_i \to \psi_j + X) = \mathcal{A}_0 \left(\right)$$

- Statistics or precision essential for flavour physics
 - NP scale, i.e. Dim = 6, proportional to
- Would tell not only if there is NP but also which flavour it couples to

$$\sqrt[4]{\text{statisitics}}$$

Types of CP Violation

- CP-violating nature of weak interaction has multiple manifestations
- Requires two interfering amplitudes with different strong and weak phases

credit: Wenbin Qian

Types of CP Violation

- CP-violating nature of weak interaction has multiple manifestations
- Requires two interfering amplitudes with different strong and weak phases

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

credit: Wenbin Qian

We continue to discover new types of CP violation

PRL124 (2020) 031801 PRD101 (2020) 012006

CKM angel γ

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

• Relative weak phase γ in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transition • Measured with tree-level decays, theoretically clean observable ($\delta \gamma / \gamma \sim 10^{-7}$)

 $h \sim r_D e^{-i\delta_D}$ *e.g.* $D \rightarrow K^{-}\pi^{+}$

CKM angel γ

• Relative weak phase γ in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transition • Measured with tree-level decays, theoretically clean observable ($\delta \gamma / \gamma \sim 10^{-7}$)

$$r_{D}e^{-i\delta_{D}}$$

$$f_{D}h^{-}$$

$$e.g. D \rightarrow K \pi^{+}$$

CKM angel γ

• Relative weak phase γ in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transition

Latest γ combination

- \odot 19 LHCb B decay measurements + 11 D decay measurements + 27 external inputs
- 29 physics parameters of interest + additional nuisance parameters

γ measurement in $B^+ \to DK^{*+}(\to K_{c}^0\pi^+)$

- CP eigenstates $D^0 \rightarrow hh, \pi\pi\pi\pi$
- Suppressed decays $D^0 \to K\pi, K\pi\pi\pi$
- Self-conjugated multi-body decays $D^0 \rightarrow K^0_S hh$
- Inputs for $D^0 \to K^0_S hh, \pi\pi\pi\pi$ from BESIII [PRD106.092004, PRD82(2010)112006, PRD102(2020)]

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb-PAPER-2024-023 arXiv: 2410.21115

$\gamma \text{ measurement in } B^0_{s} \to D^0_{s}$

 Time-dependent CP violation measurement • Interference between mixing and decay \rightarrow relative phase difference of $\gamma - 2\beta_s$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

$$F_{s}^{\pm}K^{\pm}$$

LHCb-PAPER-2024-020 in preparation

CKM angles $\beta_{(s)}$

- Tree dominated $b \to c\bar{c}s$ transition offers access to the CKM angle $\beta_{(s)}$
- CP violation in the interference between mixing and decays

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \quad \propto -D_{\text{tag}} \cdot D_t \cdot \eta_f \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$$

Phys. Rev. Lett. 132 (2024) 021801 Phys. Rev. Lett. 132 (2024) 051802

$$\beta_{(s)} = arg(-\frac{V_{cq}V_{cb}^*}{V_{tq}V_{tb}^*})$$

$$\frac{B}{A_f}$$

$$\frac{A_f}{\overline{A_f}}$$

t_{CP}

CKM angles $\beta_{(s)}$

- Tree dominated $b \to c\bar{c}s$ transition offers access to the CKM angle $\beta_{(s)}$
- CP violation in the interference between mixing and decays

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \quad \propto -D_{\text{tag}} \cdot D_t \cdot \eta_f \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$$

Phys. Rev. Lett. 132 (2024) 021801 Phys. Rev. Lett. 132 (2024) 051802

$$\beta_{(s)} = arg(-\frac{V_{cq}V_{cb}^*}{V_{tq}V_{tb}^*})$$

$$q/p$$
 A_f f_{CP}
B

$$\phi_s^{c\bar{c}s} = -0.031 \pm 0.018$$
 rad

$$\phi_s^{CKMFitter} \approx -2\beta_s$$

$$= (-0.0368^{+0.0006}_{-0.0009})$$

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

• O(1%) direct CP violation expected in $B^+ \rightarrow J/\psi \pi^+$ [PRD 49 (1994) 5904, PRD 52 (1995) 242]

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb-PAPER-2024-31 New in preparation

• Important control channel to understand penguin effects in sin 2β measurement in $B^0 \to J/\psi K^0$

[PRD 79 (2009) 014030, JHEP 03 (2015) 145]

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

• O(1%) direct CP violation expected in $B^+ \rightarrow J/\psi \pi^+$ [PRD 49 (1994) 5904, PRD 52 (1995) 242]

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb-PAPER-2024-31 New in preparation

• Important control channel to understand penguin effects in sin 2β measurement in $B^0 \to J/\psi K^0$ [PRD 79 (2009) 014030, JHEP 03 (2015) 145]

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

First evidence for direct CP violation in beauty decays to charmonium final states (3.2 σ)

• Taking previous LHCb result of $A^{CP}(B^+ \rightarrow J/\psi K^+)$ to extract: [Phys. Rev. D 95, 052005 (2017)]

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb-PAPER-2024-31 New in preparation

 $A^{CP}(B^+ \rightarrow J/\psi \pi^+) = (1.51 \pm 0.50 \pm 0.11) \times 10^{-2}$

Penguin constraint

- SU(3) flavour symmetry: $a = a', \theta = \theta'$
- contributions

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb-PAPER-2024-31 New

 $A(B^+ \to J/\psi\pi^+) = -\lambda \mathcal{A}(1 + ae^{i\theta}e^{i\gamma}) \quad A(B^+ \to J/\psi K^+) = (1 - \lambda^2/2)\mathcal{A}'(1 + \epsilon a'e^{i\theta'}e^{i\gamma})$

• Constraints on the relative size (a) and strong phase difference (θ) between penguin and tree

See more details in Manshu Li's talk (Thursday afternoon)

CP violation in baryonic decays?

• Baryons crucial for asymmetries in Universe, no CP violation in baryons observed yet • CPV: *b* baryons $\mathcal{O}(1 - 10\%)$, *c* baryons $\mathcal{O}(0.1\%)$, hyperon $\mathcal{O}(0.001 - 0.01\%)$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

• Puzzling situation: similar Λ_b^0 production as B^+ , huge significance of CPV in B^+ , none in Λ_b^0 ?

Charmless three-body *b* decays

- large as 80%

• Systematic study of $\Lambda_h^0/\Xi_h^0 \to \Lambda h^+ h^-$ with control mode to reduce systematic uncertainty

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0}\left(\Xi_{b}^{0}\right)\to\Lambda h^{+}h^{\prime-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0}\to\Lambda_{c}^{+}\left(\to\Lambda\pi^{+}\right)\pi^{-}\right)}=\frac{N_{\Lambda_{b}^{0}}\left(\Xi_{b}^{0}\to\Lambda_{b}^{+}\right)}{N_{\Lambda_{b}^{0}\to\Lambda_{c}^{0}}}$$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

CERN Seminar by W. Qian First observation of $\Lambda_h^0(\Xi_h^0) \to \Lambda \pi^+ \pi^-(K^-)$ New LHCb-PAPER-2024-043 in preparation

 $\frac{(\Xi_b^0) \rightarrow \Lambda h^+ h'^-}{ \rightarrow \Lambda_c^+ (\rightarrow \Lambda \pi^+) \pi^-} \times \frac{\epsilon_{\Lambda_b^0} \rightarrow \Lambda_c^+ (\rightarrow \Lambda \pi^+) \pi^-}{\epsilon_{\Lambda_b^0} (\Xi_b^0) \rightarrow \Lambda h^+ h'^-} \times \frac{f_{\Lambda_b^0}}{f_{\Lambda_b^0} (\Xi_b^0)} \right|$

First observation of $\Lambda_h^0(\Xi_h^0) \to \Lambda \pi^+ \pi^-(K^-)$

• Systematic study of $\Lambda_b^0/\Xi_b^0 \to \Lambda h^+ h^-$ with control mode to reduce systematic uncertainty

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0}\left(\Xi_{b}^{0}\right)\to\Lambda h^{+}h^{\prime-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0}\to\Lambda_{c}^{+}\left(\to\Lambda\pi^{+}\right)\pi^{-}\right)}=\frac{N_{\Lambda_{b}^{0}}\left(\Xi_{b}^{0}\to\Lambda_{b}^{0}\to\Lambda_{c}^{0}\left(\to\Lambda\pi^{+}\right)\pi^{-}\right)}{N_{\Lambda_{b}^{0}\to\Lambda_{c}^{0}}}$$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

<u>CERN Seminar by W. Qian</u> New LHCb-PAPER-2024-043 in preparation

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

<u>CERN Seminar by W. Qian</u>

LHCb-PAPER-2024-043 New in preparation

 $\mathcal{A}^{CP}(\Lambda_b^0/\Xi_b^0 \to f) \equiv \frac{\Gamma(\Lambda_b^0/\Xi_b^0 \to f) - \Gamma(\overline{\Lambda}_b^0/\overline{\Xi}_b^0 \to \overline{f})}{\Gamma(\Lambda_b^0/\overline{\Xi}_b^0 \to f) + \Gamma(\overline{\Lambda}_b^0/\overline{\Xi}_b^0 \to \overline{f})}$

CERN Seminar by W. Qian Evidence of CP violation in baryonic decays LHCb-PAPER-2024-043 New

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

CERN Seminar by W. Qian

LHCb-PAPER-2024-043 New in preparation

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

CERN Seminar by W. Qian

LHCb-PAPER-2024-043 New in preparation

CERN Seminar by W. Qian LHCb-PAPER-2024-043 New in preparation Preliminary LHCb $m(\Lambda K^+) < 2.9 \text{ GeV}$ $m(K^+K^-) > 2.2 \text{ GeV}$ $\Lambda_b^0 \to N^{*+} K^-$ — Total fit $-\overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda}K^{+}K^{-}$ $-\overline{\Xi}_{b}^{0} \rightarrow \overline{\Lambda} K^{+} K^{-}$ $\Lambda_h^0 \to \Lambda K^+ K^-$ yields $\overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda} K^{-} \pi^{+} (\text{mis})$ Comb. bkg. 25 c^4 $\cdots \overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda} K^{+} K^{-} \gamma$ $\cdots \overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda} K^{+} K^{-} \pi^{0}$ LHCb $[GeV^2/$ ┝╪_{┷╪╋╋}╪╧_{┷╋╋}╪┥_{┷╋╋}╋╧ $\Lambda^0_h \to \Lambda K^+ K^-$ 20 6000 5800 $m(\overline{\Lambda}K^+K^-)$ [MeV/ c^2] $m^{2}(K^{+}K^{-})$ 15 10 $\Lambda_{h}^{0} \rightarrow \Lambda \phi, \Lambda f(1500)$ 30 10 20 Preliminary $m^2(\Lambda K^+)$ [GeV²/ c^4] Consistent with 0 within 2.5σ Predicted CPV (resonant), ~1.5% PRD107 (2023) 053009

See more details in Chenxu Yu's talk (Friday afternoon)

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb-PAPER-2024-048 New in preparation

No clear asymmetry observed directly

 $A_{CP}^{pK^{-}} = (-1.14 \pm 0.67 \pm 0.36)\%$ $A_{CP}^{p\pi^{-}} = (-0.20 \pm 0.83 \pm 0.37)\%$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

New LHCb-PAPER-2024-048 in preparation

No clear asymmetry observed directly

$$A_{CP}^{pK^{-}} = (-1.14 \pm 0.67 \pm 0.36)\%$$
$$A_{CP}^{p\pi^{-}} = (-0.20 \pm 0.83 \pm 0.37)\%$$

Why CP violation so small?

 $\bar{A} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$ $A = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)}$ $A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2) \qquad \delta_1 - \delta_2 \sim 0?$

- Small strong phase difference?
- Cancellation between S, P waves? <u>arXiv:2409.02821</u>

See more details in Xinchen Dai's talk (Thursday afternoon)

What's more?

Decay parameter, first proposed by Lee and Yang (1959) to study hyperon decays

New CP observables

$$A_{\alpha} = \frac{\alpha_{+} + \alpha_{-}}{\alpha_{+} - \alpha_{-}} = -\tan(\delta)\tan(\phi) \qquad R_{\beta_{1}} = \frac{\beta_{+} + \beta_{-}}{\alpha_{+} - \alpha_{-}} = \tan(\phi) \qquad R_{\beta_{2}} = \frac{\beta_{+} - \beta_{-}}{\alpha_{+} - \alpha_{-}} = -\tan(\delta)$$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

$$\alpha_{\mp} = \pm \frac{2\Re(S^*P)}{|S|^2 + |P|^2} = \pm \frac{2|S||P|\cos(\delta \pm \phi)}{|S|^2 + |P|^2}$$

$$\beta_{\mp} = \pm \frac{2\Im(S^*P)}{|S|^2 + |P|^2} = \pm \frac{2|S||P|\sin(\delta \pm \phi)}{|S|^2 + |P|^2}$$

$$\gamma = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2} \qquad \alpha^2 + \beta^2 + \gamma^2 = 1$$

* δ, ϕ : strong and weak phase difference between S and P waves

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

arXiv:2409.02759

- First determination of α in $\Lambda_h^0 \to \Lambda_c^+ h^-$ decays $\mathcal{O}(0.9\%)$

- Pave the way for other decay parameter measurements

See more details in Yuhao Wang's talk (Friday afternoon)

Summary

- In LHCb dominates the world average of many measurements in CKM and CPV Run 1+2 data
- ✓ First evidence of CP violation in $B^+ \to J/\psi \pi^+$ and $\Lambda_h^0 \to \Lambda K^+ K^-$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

✓ Various precise measurement of CP violation in beauty and charm decays using LHCb

Run 3 provides great opportunities for further test of the SM and search for new physics

Run 3 has collected more data than Run 1+2, a lot more new results to come!

LHCb Experiment at CERN

Run / Event: 255623 / 300064

LHCb ГНСр

Data recorded: 2022-11-25 09:40:16 GMT

Back up slides

LHCb detector

General purpose detector specialised in beauty and charm hadrons

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

LHCb performance: JINST 14 (2019) P04013

 $2 < \eta < 5$

LHCb detector

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays: $p_T \sim O(1 \text{ GeV}/c)$, flight distance L~1mm

 $2 < \eta < 5$

LHCb detector

Control of penguin contribution

- $\sigma(\phi_s) \sim 0.016$ comparable with the theoretical estimation of $\Delta \phi_s^{penguin} \sim 1^\circ \approx 0.017$, better control of penguin effect necessary
- Combined analysis of penguin contributions in ϕ_s and ϕ_d (sin 2 β), using SU(3) flavour symmetry

$$egin{aligned} \phi_d &= ext{sin}(2eta^{ ext{tree}}) + \Delta \phi_d^{ ext{penguin}} + \phi_d^{ ext{NP}} \ \phi_s &= \phi_s^{ ext{tree}} + \Delta \phi_s^{ ext{penguin}} + \phi_s^{ ext{NP}} + \phi_s^{ ext{NP}} \end{aligned}$$

J.Phys.G 48 (2021) 6, 065002

Method to measure ΔA^{CP}

> CP asymmetries Raw asymmetries from mass fit

Production asymmetries largely cancelled

> CP asymmetry difference $\Delta A^{CP} \equiv A^{CP} (B^{\mp} \longrightarrow J/\psi \pi^{\mp}) - A^{CP} (B^{\mp} \longrightarrow J/\psi K^{\mp})$

P. Li · CLHCP2024 · UPV al LINUN · 2024-11-13

- $= \Delta a^{\rm raw} \Delta a^{\rm prod} \Delta a^{\rm det} \Delta a^{\rm PID}$

credit: Manshu Li

y measurements

B decay	D decay	Ref.	Dataset	Status since					
				Ref. [14]					
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before					
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	$\operatorname{Run}1\&2$	New					
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[36]	$\mathrm{Run}\;1\&2$	As before	D decay	Observable(s)	Ref	Dataset	Sta
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h^{\prime\mp} \pi^0$	[37]	$\mathrm{Run}\;1\&2$	As before	D decay	O bbel vable(b)	1001.	Davasev	Ref
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	$\mathrm{Run}\;1\&2$	As before	$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[44-46]	Run 1&2	$\frac{1}{As}$
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[39]	$\mathrm{Run}\;1\&2$	As before	$D^0 \to K^+ K^-$	$A_{CP}(K^+K^-)$	[46-48]	Run 2	As
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^{\pm} h'^{\mp} \ (PR)$	[35]	Run 1&2	As before	$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[49, 50]	Run 1&2	As
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ~({ m PR})$	[20]	Run 1&2	\mathbf{New}	$D^0 ightarrow h^+ h^-$	ΔY	[51 - 54]	Run 1&2	As
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ~({ m FR})$	[21]	Run 1&2	\mathbf{New}	$D^0 \to K^+ \pi^-$ (double tag)	$R^{\pm},~(x'^{\pm})^2,~y'^{\pm}$	[55]	Run 1	As
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	$[22]^{\dagger}$	Run 1&2	Updated	$D^0 \to K^+ \pi^- \text{ (single tag)}$	$R_{K\pi},A_{K\pi},c_{K\pi}^{(\prime)},\Delta c_{K\pi}^{(\prime)}$	[27,56]	Run 1&2	$\mathbf{U}\mathbf{p}$
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$[22]^{\dagger}$	$\mathrm{Run}\;1\&2$	Updated	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[57]	Run 1	As
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	$[22]^{\dagger}$	$\mathrm{Run}\;1\&2$	\mathbf{New}	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x,y	[58]	Run 1	As
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before	$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[59]	Run 1	As
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	$\mathbf{Updated}$	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[60,61]	Run 2	As
$B^0 \to DK^{*0}$	$D ightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[23]	Run 1&2	Updated	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$\Delta Y^{ m eff}$	[26]	Run 2	Ne
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	Updated					
$B^0 ightarrow D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[41]	Run 1	As before					
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	$[25,42]^\dagger$	Run 1&2	Updated					
$B^0_s ightarrow D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[43]	Run 1&2	As before					

Time-dependent CPV in $B^0 \rightarrow D^+D^-$

 $\frac{\mathrm{d}\Gamma(t,d)}{\mathrm{T}} \propto e^{-t/\tau_{B^0}} \left(1 + d C_{D^+D^-} \cos \Delta m_d t - d S_{D^+D^-} \sin \Delta m_d t\right)$

New

arXiv: 2409.03009

• CP asymmetry observed in $B^0 \rightarrow D^+D^-$ for the first time

$$S_{D^+D^-} = -0.549 \pm 0.085 \,(\text{stat}) \pm 0.015 \,(\text{syst})$$

 $C_{D^+D^-} = 0.162 \pm 0.088 \,(\text{stat}) \pm 0.009 \,(\text{syst})$

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed
- Tiny weak phases in first two generations of CKM matrix
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed
- Tiny weak phases in first two generations of CKM matrix
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

Breakthroughs by LHCb thanks to huge statistics: First observation of CPV in $D^0 \rightarrow h^+h^-$ decays Evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$ decay $A_{CP}(\pi^+\pi^-) = (23.2 \pm 6.1) \times 10^{-4} (3.8\sigma)$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

- $\Delta A_{CP} = A_{CP}(K^+K^-) A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4} \text{ [PRL(2019)211803]}$
 - [PRL(2023)211803]

Direct CP violation in $D^+ \to K^+ K^- \pi^+$

• Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay • Control channel $D_s^+ \to K^+ K^- \pi^+$ (*C*) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} - A_{\rm raw}^{i,$$

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

A^{global} $_{i,C}$

Direct CP violation in $D^+ \to K^+ K^- \pi^+$

• Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay • Control channel $D_s^+ \to K^+ K^- \pi^+$ (C) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} - A_{\rm raw}^{i,S}$$

 $\frac{i,C}{raw} - \Delta A_{raw}^{
m global}$

Direct CP violation in $D^+ \rightarrow K^+ K^- \pi^+$

- Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay
- Control channel $D_s^+ \to K^+ K^- \pi^+$ (C) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} - A_{\rm raw}^{i,C} - \Delta A_{\rm raw}^{\rm globa}$$

 Test-statistic to extract a p-value for the hypothesis of no localised CP violation

arXiv:2409.01414

Direct CP violation in $D^+ \rightarrow K^+ K^- \pi^+$

- Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay
- Control channel $D_s^+ \to K^+ K^- \pi^+$ (C) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} - A_{\rm raw}^{i,C} - \Delta A_{\rm raw}^{\rm globa}$$

 Test-statistic to extract a p-value for the hypothesis of no localised CP violation

New

• p-values (2.3-14.1%) compatible with absence of localised CP violation in Dalitz plot

Time-dependent CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

First measurement of time-dependent CP violation in SCS mode

Phys. Rev. Lett. 133 (2024) 101803

$$\Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y dx \right] \right]$$

$$\Delta Y \equiv \eta_{CP} \Delta Y_{f_{CP}} = (-1.3 \pm 6.3 \pm 2.4) \times 10^{-10}$$

Time-dependent CP violation in $D^0 \rightarrow K\pi$

Interference between mixing and decay for favoured RS and suppressed WS decays

DCS over CF amplitude $R_{K\pi}^{\pm}(t) pprox R_{K\pi} \left(1 \pm A_{K\pi}\right) + R_{K\pi} \left(1 \pm A_{K\pi}
ight)$

CPV observables: $A_{K\pi}$ (in decays), $\Delta c_{K\pi}$ (in interference), $\Delta c'_{K\pi}$ (in mixing). Mixing observables: $c_{K\pi}$, $c_{K\pi}$ P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

$$\left(\mathbf{c}_{\mathbf{K}\pi} \pm \Delta \mathbf{c}_{\mathbf{K}\pi} \right) \left(\frac{t}{\tau_{D^0}} \right) + \left(\mathbf{c}_{\mathbf{K}\pi}' \pm \Delta \mathbf{c}_{\mathbf{K}\pi}' \right) \left(\frac{t}{\tau_{D^0}} \right)$$

Time-dependent CP violation in $D^0 \rightarrow K\pi$

Measured with yields: RS ~400 M, WS ~1.6 M

P. Li · CLHCP2024 · CPV at LHCb · 2024-11-15

arXiv:2407.18001

 $c_{K\pi} \approx y_{12} \cos \phi_f^{\Gamma} \cos \Delta_f + x_{12} \cos \phi_f^M \sin \Delta_f$

