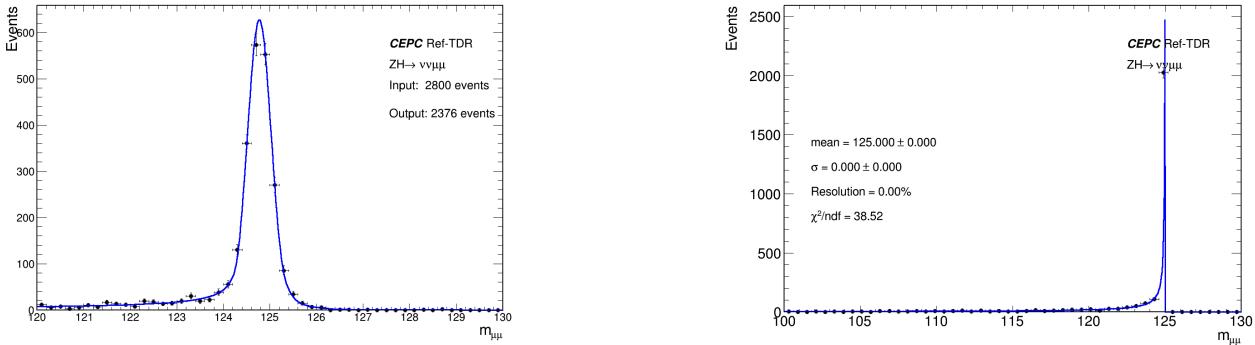
Outline

- Jet Tasks Last Wednesday <u>slides</u>
- Dimuon check
- Computing

Jet tasks to do

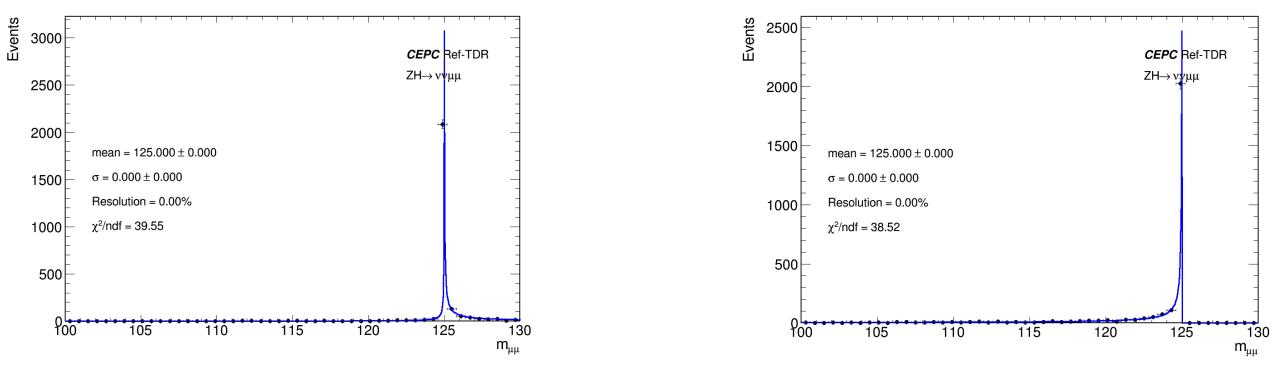
- Jet Sample Production
- Jet Gen Match
- JE related plots
- JA related plots
- BMR plots
- Neutral jet superclusters
- Particle gun one-type particle response

Tasks sub priority


- Remove isolated lepton/photon in PFO then jet clustering.
 - Need a quick PID
- Jet Event display
- Validation ee-kt algorithm with others.
- Validation generator Whizard with others.
- Flavors/JOI
- Endcap jet performance
- Repeat Ecal/Hcal performance

Reco

Truth

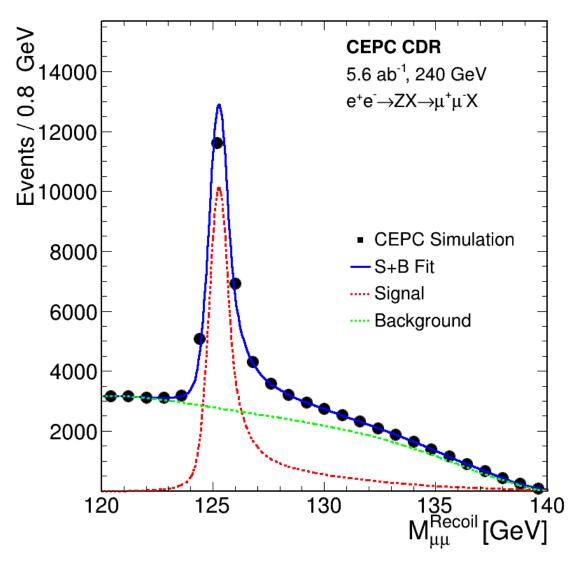


In reco, 13% are <120. In truth, 8.7% <120%. Occasionally, FSR photons energy > 10GeV.

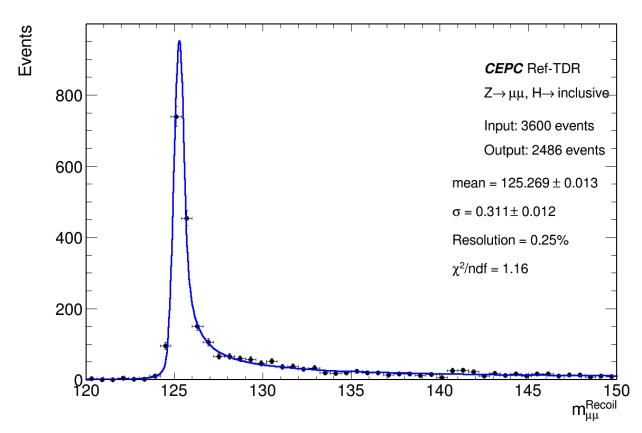
dimuons

By selecting 2 muons in status=2 (intermediate) and add photons back (in Dr=0.4 close to muon).

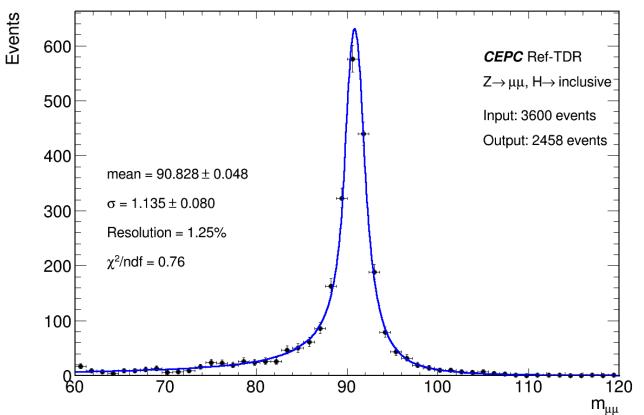
Truth + Photons



Conclusion: due to FSR photons, dimuon lose ~10% in truth. This reduce the yields but impacts on resolution are small.


Truth

Z->mm H->inclusive


0.25% resolution on M_recoil_mm Consistent with Gang's 0.26% results. Better than CDR. In this fit $\Delta m = 13$ MeV.

7

Z->mm H->inclusive

• Without PID, currently use truth muon

match to find reco muons.

- Can be done preliminarily but matching eff not so good (70%);
- Need real pid for inclusive study.

Job Time/Memory consuming

9

Use Z->vv H->bb 100k events for testing. In TDR24.10.0 but muon chamber removed;

- Z->vv H->bb 100events per job, can be run under 4g memory quota.
- Sim: 32.5min Digi: 15min
- Tracking: 4min Rec: 7min (+Jet clustering)
- So 100 hadronic events -> 1h. 1 event -> 36s.
- 10 events ->1000s. 1 event ->100s. The init require ~10 mins per job.
 Time ratio:
- Sim: Digi: Tracking: Rec = 4:3:1:1. Or 45:31:13:11.

Job Disk quota consuming

- Z->vv H->bb 100events
- Sim: 1.4GB; 14M per event;
 Generator+Digi+Trk+Rec+Jet+..... 100M.
 Total 1.5GB; 15M per event.

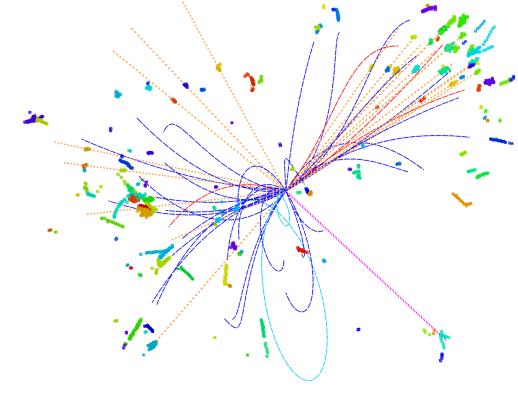
Job CPU/Quene consuming

- In the same time, my account ~200 CPU can be used.
- Not all computers can use 4G or even larger memory.
- May meet problems when big sample production.

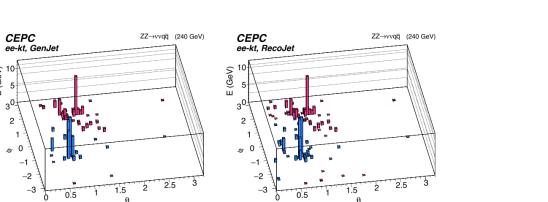
Duplicated tracks

CyberPF0.energy = 76.903656, 76.838547, 26.50078323, 1.213580, 0.989452 CyberPFO.momentum.x = -17.793270, -17.776035, 88513, -0.416533, -0.157947, 0.361082 CyberPFO.momentum.y = 18.909502, 18.893721, 0.7, 0.922086, 0.054292, 0.508451 CyberPFO.momentum.z = -72.387863, -72.327049, .077820, 1.202032, 0.768187 CyberPFO.referencePoint.x = 0.000000, 0.0000000.000000, 0.000000, 0.000000 CyberPFO.referencePoint.y = 0.000000, 0.0000000.000000, 0.000000, 0.000000 CyberPF0.referencePoint.z = 0.000000, 0.0000000.000000, 0.000000, 0.000000 CyberPFO.charge = -1.000000, -1.000000, 1.00000

18 * -17.77603	* 18.893722 * -72.3	2704 * 76.838546 *	71 *
19 * -0.036795	* -0.326339 * 0.320	6066 * 0.4589554 *	41 *
20 * 0.0086232	* 0.3858807 * -0.11	5507 * 0.4028900 *	240 *
21 * 0.4124406	* -0.192677 * -0.17	3640 * 0.4872195 *	38 *
22 * -0.121198	* -0.844869 * 0.165	4589 * 0.8694078 *	228 *
23 * 0.3610824	* 0.5084511 * 0.768	1869 * 0.9894514 *	170 *
24 * -17.79327	* 18.909502 * -72.3	8786 * 76.903656 *	11 *


- In Z->mm H->inclusive
- Found 2 PFOs with very close PxPyPzE.
 - Difference in 0.1GeV. Not realistic.
- The track indicates that there are one track but splitting to 2. -> Got 2 PFOs.
- 0.7% in dimuon.
- More often in low energy cases.
- Should only pick 1.
 - Duplication removal in Reco level.
- @Fangyi and track experts.

Backup


- Including varied components
- CEPC uses FastJet package to do jet clustering.
- Now, ee-kt/Durham algorithm used.
 - You need and only need to specify N_jets for Fastjet.
 - Generally, for all kt algos, 2 parameter: R and P can be adjusted.
 - ee-kt no R setting, so all clusters will be clustered.

$$d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{(1 - \cos \theta_{ij})}{(1 - \cos R)},$$

$$d_{iB} = E_i^{2p},$$

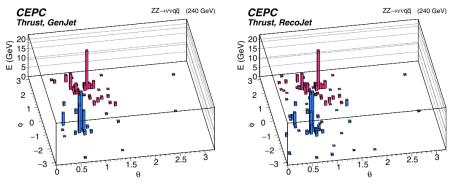
14

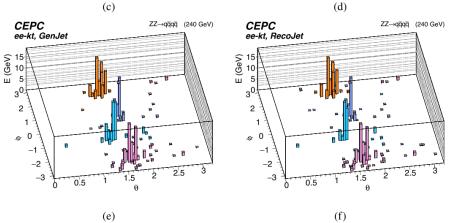
Jet event display

() 10 5 Д

0_

2


1 æ 0


-1

-2

-3

(e)

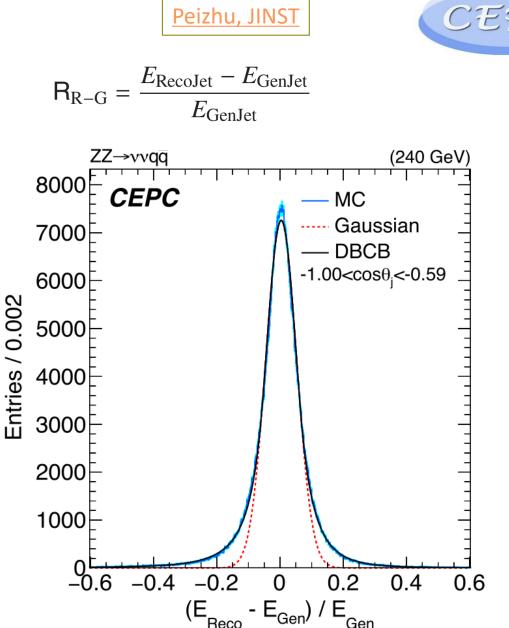
Jet @ CEPCSW

- Specify PFO container and njets.
- Not stored in final ntuple.
- In Zebing's Genmatch
 - Many variable stored.
 - Find jet_ntuple to extract informations

JetDefinition jet_def(ee_kt_algorithm);

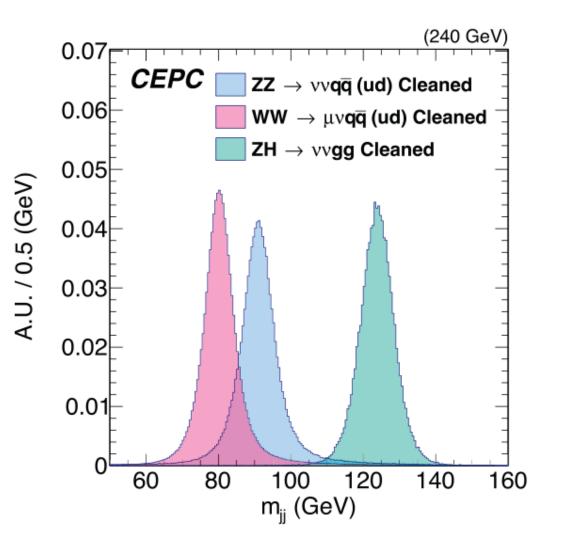
ClusterSequence clust_seq(input_particles, jet_def);

vector<PseudoJet> jets = sorted_by_pt(clust_seq.exclusive_jets(nJets));


atusCode GenMatch::initialize(){

_file = TFile::Open(m_outputFile.value().c_str(), "RECREATE"); _tree = new TTree("jets", "jets"); _tree->Branch("jet1_px", &jet1_px, "jet1_px/D"); tree->Branch("jet1_py", &jet1_py, "jet1_py/D"); tree->Branch("jet1_pz", &jet1_pz, "jet1_pz/D"); _tree->Branch("jet1_E", &jet1_E, "jet1_E/D"); _tree->Branch("jet1_costheta", &jet1_costheta, "jet1_costheta/D"); _tree->Branch("jet1_phi", &jet1_phi, "jet1_phi/D"); _tree->Branch("jet1_pt", &jet1_pt, "jet1_pt/D"); tree->Branch("jet1_nconstituents", &jet1_nconstituents, "jet1_nconstituents/I"); _tree->Branch("jet2_px", &jet2_px, "jet2_px/D"); _tree->Branch("jet2_py", &jet2_py, "jet2_py/D"); _tree->Branch("jet2_pz", &jet2_pz, "jet2_pz/D"); tree->Branch("jet2_E", &jet2_E, "jet2_E/D"); _tree->Branch("jet2_costheta", &jet2_costheta, "jet2_costheta/D"); tree->Branch("jet2_phi", &jet2_phi, "jet2_phi/D"); _tree->Branch("jet2_pt", &jet2_pt, "jet2_pt/D"); _tree->Branch("jet2_nconstituents", &jet2_nconstituents, "jet2_nconstituents/I"); tree->Branch("constituents_E1tot", &constituents_E1tot, "constituents_E1tot/D"); tree->Branch("constituents_E2tot", &constituents_E2tot, "constituents_E2tot/D"); tree->Branch("mass", &mass, "mass/D"); tree->Branch("ymerge", ymerge, "ymerge[6]/D"); tree->Branch("nparticles", &nparticles, "nparticles/I"); tree->Branch("jet1_GENMatch_id", &jet1_GENMatch_id, "jet1_GENMatch_id/I"); tree->Branch("jet2_GENMatch_id", &jet2_GENMatch_id, "jet2_GENMatch_id/I"); tree->Branch("jet1_GENMatch_mindR", &jet1_GENMatch_mindR, "jet1_GENMatch_mindR/D"); _tree->Branch("jet2_GENMatch_mindR", &jet2_GENMatch_mindR, "jet2_GENMatch_mindR/D");

_tree->Branch("PF0_Energy_muon", &PF0_Energy_muon); _tree->Branch("PF0_Energy_muon_GENMatch_dR", &PF0_Energy_muon_GENMatch_dR); _tree->Branch("PF0_Energy_muon_GENMatch_ID", &PF0_Energy_muon_GENMatch_ID); _tree->Branch("PF0_Energy_Charge", &PF0_Energy_Charge]; _tree->Branch("PF0_Energy_Charge_Ecal", &PF0_Energy_Charge_Ecal); _tree->Branch("PF0_Energy_Charge_Hcal", &PF0_Energy_Charge_Ecal); _tree->Branch("PF0_Energy_Charge_Hcal", &PF0_Energy_Charge_Ecal); _tree->Branch("PF0_Energy_Charge_GENMatch_dR", &PF0_Energy_Charge_GENMatch_dR); _tree->Branch("PF0_Energy_Charge_GENMatch_ID", &PF0_Energy_Charge_GENMatch_LR); _tree->Branch("PF0_Energy_Charge_GENMatch_ID", &PF0_Energy_Charge_GENMatch_LR); _tree->Branch("PF0_Hits_Charge_GENMatch_ID", &PF0_Energy_Charge_GENMatch_E); _tree->Branch("PF0_Hits_Charge_GENMatch_ID", &PF0_Energy_Charge_GENMatch_E); _tree->Branch("PF0_Hits_Charge_Mits_Charge_E); _tree->Branch("PF0_Hits_Charge_T", &PF0_Hits_Charge_C); _tree->Branch("PF0_Hits_Charge_T", &PF0_Hits_Charge_LD; _tree->Branch("PF0_Hits_Charge_T);

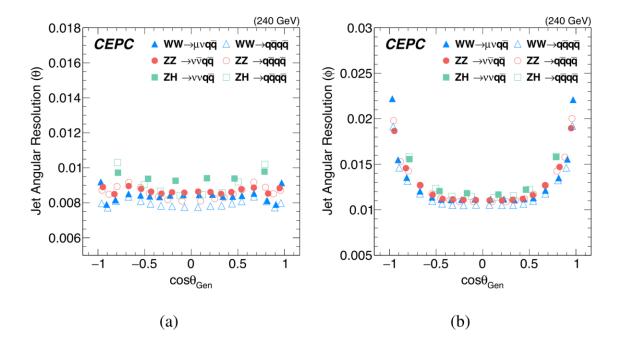

_tree->Branch("PF0_Energy_Neutral", &PF0_Energy_Neutral); _tree->Branch("PF0_Energy_Neutral_singleCluster", &PF0_Energy_Neutral_singleCluster); _tree->Branch("PF0_Energy_Neutral_singleCluster_R", &PF0_Energy_Neutral_singleCluster_R); _tree->Branch("PF0_Hits_Neutral_E", &PF0_Hits_Neutral_E); _tree->Branch("PF0_Hits_Neutral_theat", &PF0_Hits_Neutral_R); _tree->Branch("PF0_Hits_Neutral_theat", &PF0_Hits_Neutral_theta); _tree->Branch("PF0_Hits_Neutral_theat", &PF0_Hits_Neutral_theta);

- After Reco-Gen matching,
- In this difference plot (DSCB fit)
- JES Jet energy scale
 - Mean value shifted (\bar{x})
- JER Jet energy resolution
 - Standard deviation (σ)

Jet performance parameters

- BMR(Boson mass resolution).
- ~Jet energy resolution.
- In CDR, when calculating BMR:
 - Veto total ISR components Pt > 1GeV;
 - Veto total neutrino Pt > 1GeV;
 - ISR and neutrino from single jet from Higgs.
 - Require Costheta_Jet;
- Current CEPCSW no endcap calo;
 - Require Costheta Jet<0.65 (under tuning)

Table 1. Event cumulative efficiency for Higgs boson exclusive decay at the CEPC with $\sqrt{s} = 240$ GeV.


	gg(%)	<i>bb</i> (%)	cc(%)	<i>WW</i> *(%)	ZZ* (%)
$Pt_{ISR} < 1 GeV$	95.15	95.37	95.30	95.16	95.24
$Pt_neutrino < 1 GeV$	89.33	39.04	66.36	37.46	41.39
Cos(Theta_Jet) < 0.85	67.30	28.65	49.31	_	_

$$\mathsf{D}_{\mathsf{R}-\mathsf{G}} = \theta_{\mathsf{RecoJet}} - \theta_{\mathsf{GenJet}} \quad \text{or} \quad \phi_{\mathsf{RecoJet}} - \phi_{\mathsf{GenJet}}$$

- JAR(θ , ϕ): Standard deviation (σ)
- JAS(θ , ϕ): Mean value shifted (\bar{x})

Most of the plots and performance need recheck under current CEPC ref-TDR. Both for performance study and sanity check.

Flavor information

- Use traditional LCFIplus package, or ML training like ParticleTransformer, jet flavor
 - information can be tagged.
- ML shows better performance
- Need migration.

G -			0.024		0.052	0.052	0.043 u	0.041	0.034 d	0.034	0.667 G
G -						0.052	0.043	0.041	0.034	0.034	0.667
	0.005										
-	0 003	0.003	0.020	0.012	0.092	0.112	0.219	0.076	0.079	0.272	0.113
d -	0.003	0.003	0.012	0.019	0.112	0.092	0.082	0.207	0.277	0.079	0.112
-	0.003	0.003	0.011	0.019	0.132	0.043	0.062	0.356	0.178	0.081	0.111
и -	0.002	0.003	0.020	0.011	0.044	0.131	0.367	0.055	0.080	0.174	0.111
True	0.003	0.003	0.018	0.020	0.102	0.542	0.084	0.028	0.045	0.062	0.094
s -	0.003	0.002	0.020	0.018	0.543	0.102	0.030	0.080	0.063	0.045	0.092
- c	0.016	0.015	0.056	0.739	0.032	0.037	0.009	0.026	0.017	0.010	0.043
с -	0.015	0.014	0.743	0.055	0.036	0.031	0.025	0.009	0.009	0.018	0.043
<u></u> -	0.170	0.737	0.026	0.033	0.003	0.004	0.003	0.002	0.002	0.003	0.018
b -	0.745	0.163	0.033	0.025	0.004	0.003	0.002	0.003	0.002	0.002	0.017

Sample preparing

Dijets:

- ZH, Z->vv, H->uu, dd, ss, bb, cc, gg
- ZZ, ZZ->vvqq;
- WW, WW->mvqq
 - Need muon removal.
- 4jets: each 100k?
- ZH, Z->vv, H->ZZ->qqqq
- ZH, Z->vv, H->WW->qqqq
- ZZ, ZZ->qqqq
- WW, WW->qqqq

6jets(?)

• ZH->ZZZ(ZWW)->qqqqqq.

each 100k; 100k; 100k;

Need to verify after binning if the stats are enough.

