Rediscovery of Numerical Luescher's Formula from the Neural Network

Based on Chin. Phys. C 48 (2024) 7, 073101

Yu Lu (陆宇)

In collaboration with

Yi-Jia Wang (王一佳) Ying Chen (陈莹) Jia-Jun Wu (吴佳俊)

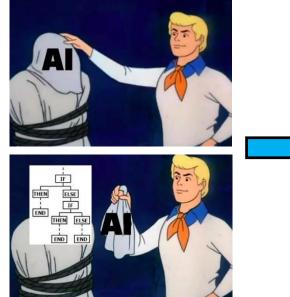
2024.11.08 @IHEP

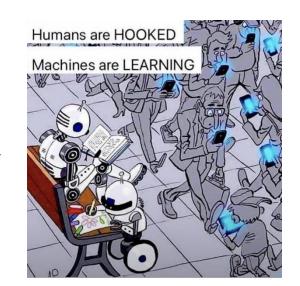
Contents

- Three Aspects of the Neural Network(NN)
 - Whether \rightarrow Architecture
 - What \rightarrow Loss
 - How \rightarrow Training
- Examples
 - Extension of Architecture
 - Variational Auto Encoder (VAE)
 - Other examples & Comments
- Rediscovery of Luescher's Formula
- Comment & Outlook

Roadmap

- Hard-Code(硬编码)
 → Knowledge Base(知识库)
 - \rightarrow Design Complicate Rules
 - 有多少人工就有多少智能(still true more or less)
 - e.g., cat-dog, ears? shape? size?
- Mis-impression:
 - Machines are stubborn, they can never be "creative"
 - Machines can only learn/memorize what people teach them
- \Rightarrow Self-discovery of the pattern/representation
- Simple Concepts \rightarrow Hierarchy \rightarrow Complicate Concepts
 - Multilayer perceptron (MLP, 多层感知机) or Feed Forward Neural Network(NN) (前向全连通神经网络)





AI = Machine Learning(ML) > (≈?)NN

NN Architecture

Anatomy	NN	Dendrite Synapse (树突) (突触)				
Dendrite(树突) Nucleus(细胞核)	 Node Input/Output/Hidden Float Points 1D Vector, 2D Matrix, nD Tensor 	Axon Nucleus (细胞核) Depth Depth Weights Biasis				
Axon(轴突) Synapse(突触)	Activation FunctionsTypically PredefinedAffine Transformation Everywhere	$f(x) = \sigma(W \cdot X + b)$				
Complicate Network	Stack of Layers (Except GNN)	Activation Function Linput Hidden Output Essentially a nesting of simple functions				
$x^{(i)} = f_i(x^{(i-1)}; \theta), \theta = \{W_i, b_i\}$ How to choose f? NN = Nonlinear functions + Affine Transformation						
	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +					

15

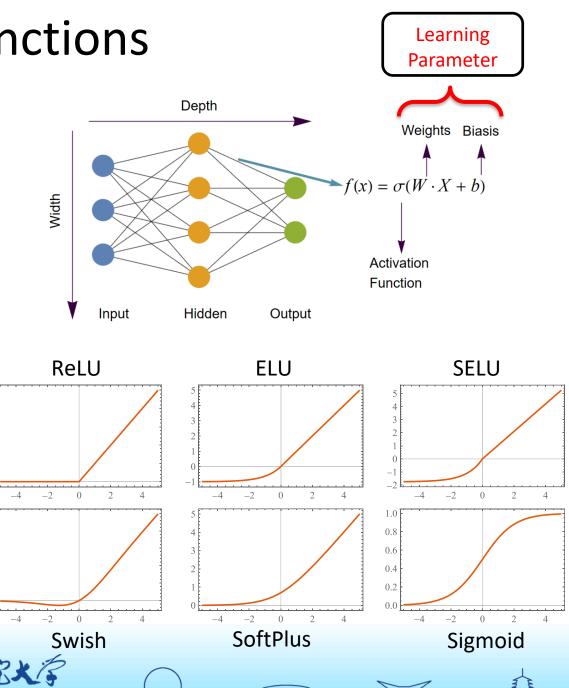
University of Chinese Academy of Sciences

49

П

Activation Functions

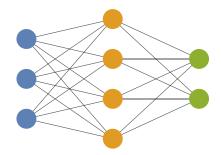
- Principles
 - Can be **any** continuous function
 - Typically has threshold/saturation + Varying Region
 - Simple Function V.S. Complex Structure
- Some Examples
 - Rectified Linear Unit (ReLU, 整流线性激活函数)
 - Piecewise linear function
 - Simple but unexpectedly effective (in CV, NLP, etc)
 - Nearly dominates NN (not in our work)
 - SoftPlus: $\log(e^x + 1)$
 - Smooth Version of ReLU
 - Triangular Functions
 - sin, cos, etc...
- That's All~



NN Can Approximate "Any" Function

Universal Approximation Theorem (UAT)

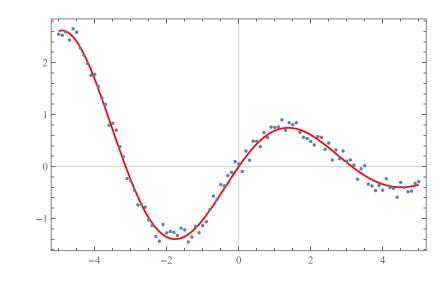
- ~ A deep and wide-enough NN can approximate "any" function with "suitable activation functions"
 - Versatile, can do anything
- Increasing depth is more efficient than expanding the width
 → Deep Learning
- ... With the cost of exploding number of parameters

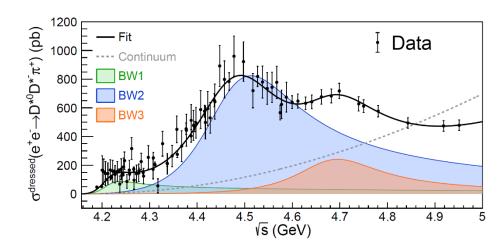


UAT: Hornik et. al, Neural Networks 2, 359; ibid, 4, 251; ibid, 6, 861

How to distinguish Good or Bad

- In phenomenology:
 - a good description ≈ a good fit
 - χ^2 -fit, F-test...
- What is a good NN? Let loss functions judge!
 - NN is nothing but a function: $x \to NN(x; \theta)$
 - $NN(x^{(i)}; \theta)$ V.S. $y^{(i)}$
- Regression \rightarrow Mean Square Error or χ^2
 - MSE := $\sum_{i} (\hat{y}_{i} f(x_{i}; \theta))^{2}$
- Loss function Judges All
 - Different Problems are defined by different loss functions





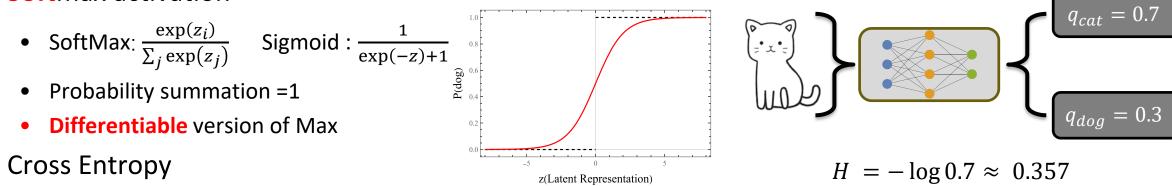
Loss function of Classification Problem

P(2) 74

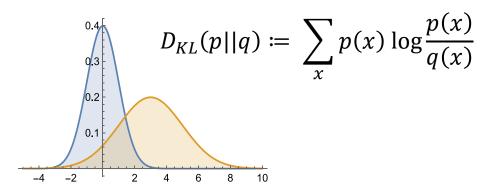
University of Chinese Academy of

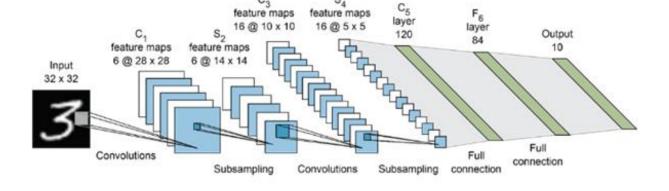
• **Soft**max activation

 \bullet



- $H(p,q) = -\sum_{x} p(x) \log q(x)$ Generalizations
 - KL Divergence etc



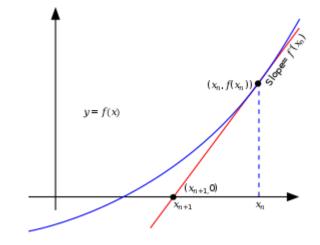


How to Train a NN

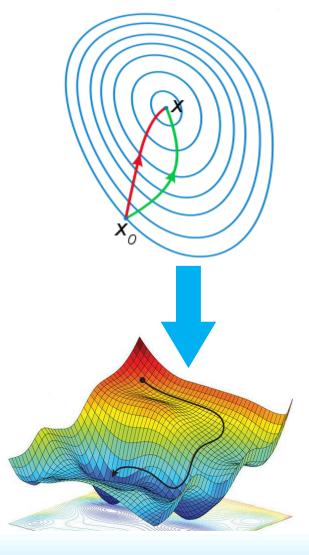
	Physical Model	Neural Network	
Parameters	~10(<100)	>10^5 (even 10^9, 10^10)	
Calculations	Integral, Differential, Recursive	Affine Transformation (Matrix Multiplication)	
Туре	Non-Linear	Non-Linear	
Difficulty	Hard	Simple (in some sense)	
Device	(mainly) CPU	GPU/TPU	
Method	"Orthodox" Numerical Methods (Quasi-) Newton Method	Automatic Differentiation Stochastic Gradient Descent Back Propagation	
Tools	ROOT/Minuit/D.I.Y	PyTorch/JAX/TensorFlow/MXNet	

How to Train a NN

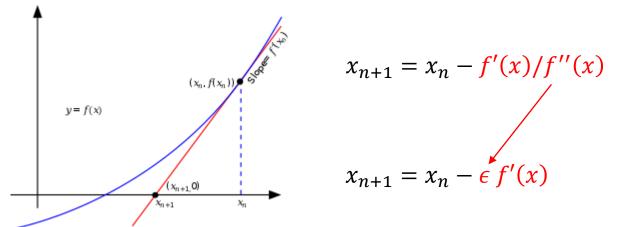
- Every problem is an optimization problem
 - Hamiltonian \leftrightarrow Lagrangian
 - Differential Equation \leftrightarrow Least Action Principle
- Orthodox way
 - Newton's method in Root Finding: $x_{n+1} = x_n - \frac{f(x)}{f'(x)}$
 - Newton's Method In Optimization: $x_{n+1} = x_n - f'(x)/f''(x)$
- f'(x), f''(x) may be difficult
 - Use approximated f''(x)
 - Quasi-Newton methods: e.g. BFGS etc
- Challenges from NN
 - many saddle points / local minima



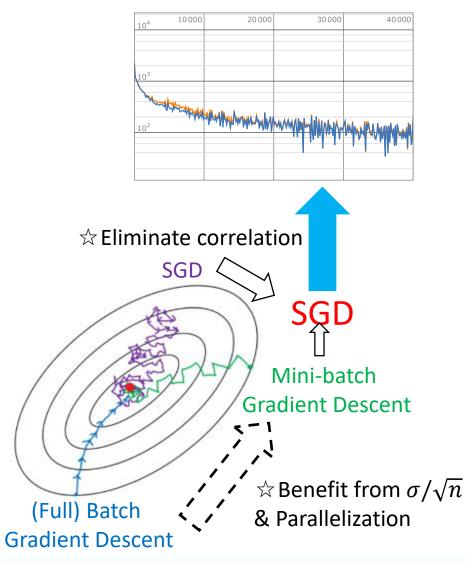
NN tells Newton: Don't pursue perfection Just do it Slooowly!



How to Train a NN

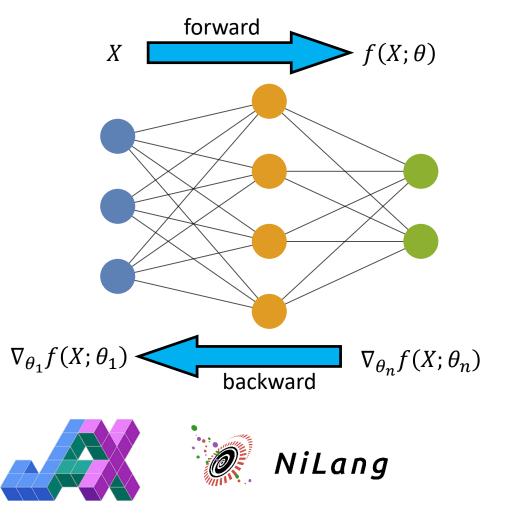


- Stochastic Gradient Descent (SDG)
 - In practice: Randomize the data, then mini-batch
 - learning rate ϵ , (typically $\sim 10^{-3}$) (randomly selected)mini batch $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $\theta \rightarrow \theta - \epsilon \frac{1}{m} \nabla_{\theta} \sum_{i} L(NN(x^{(i)}; \theta), y^{(i)})$
 - ∇^2_{θ} is expensive, rarely used in practice
- How to get $\nabla_{\theta} L$?



Automatic Differentiation + Back Propagation

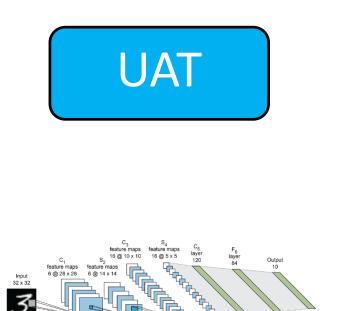
- $\nabla_{\theta} L$ is the crux
- Back Propagation
 - Each activation function is "simple"
 - Hierarchy -> Chain rule
 - $\nabla_{\theta_1} f(g(x;\theta_1);\theta_2) = \nabla_{\theta_1} g(x;\theta_1) * f'(g(x;\theta_1);\theta_2)$
 - $f(x; \theta) \coloneqq f(W.X + b)$ (affine transformation) -> GPU
 - Implemented in Pytorch, Mathematica (MXNet)...
- General Technique: Automatic Differentiation (AD)
 - Not numerical $f(x + \delta) f(x)$, nor symbolic
 - "Differentiate" the code (including loops): $\sin x \rightarrow \cos x$
 - Get f'(x) along the way
 - Packages: Jax (Python), NiLang (Julia) ...
 - Not sure ROOT has implement this or not



See "Deep Learning" Chapter 6.5 for the details

Short Summary

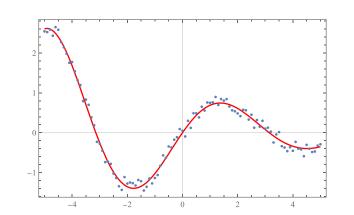
• Architecture (Whether)

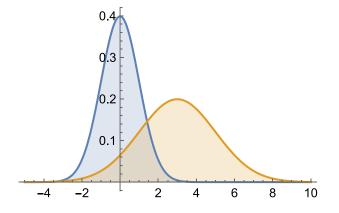


Subsampling

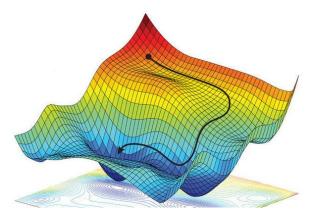
Convolutions

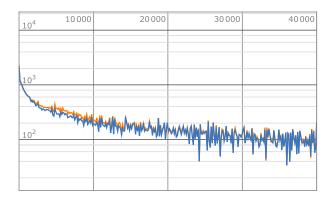
• Loss Function (What)





• Optimization (How)





Full

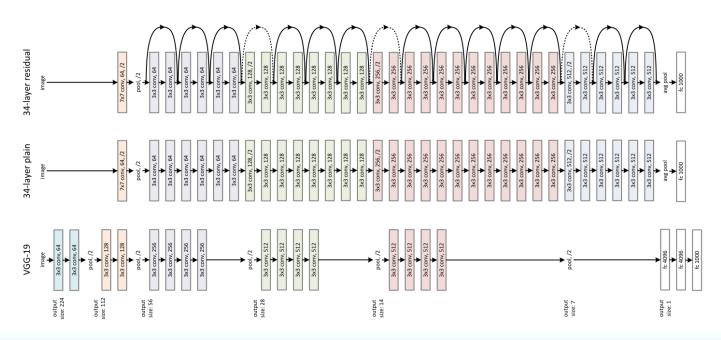
connection connection

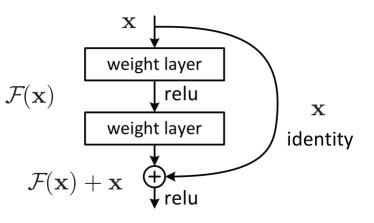
Full

Gaussian

Architecture Extensions

- ResNet
 - Introduce Jump-Link to Accelerate Training & Inference
 - $F_{n+1}(x) = \mathbf{x} + F_n(x)$
 - Alleviate the Gradient-Vanishing/Exploding Problem
 - Make training deep NN possible





One small step for a NN one giant leap for the ML community!

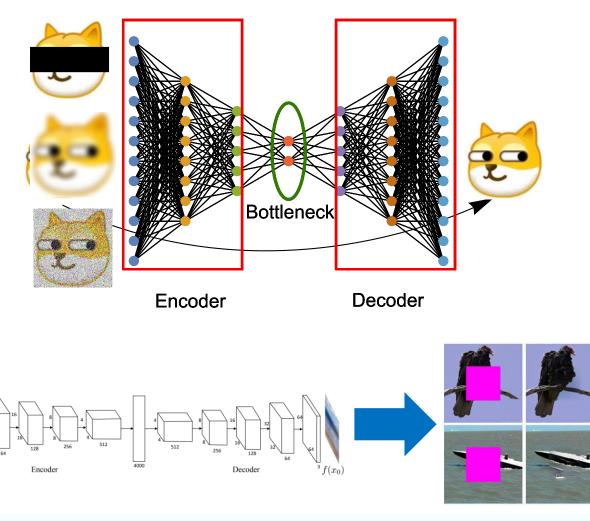
Kaiming He (何恺明) et. al [arXiv:1512.03385]

KAN. Ziming Liu *et. al* [arXiv:2404.19756] **UATs are still not fully understood**! Much to explore

AutoEncoder(自动编码器)

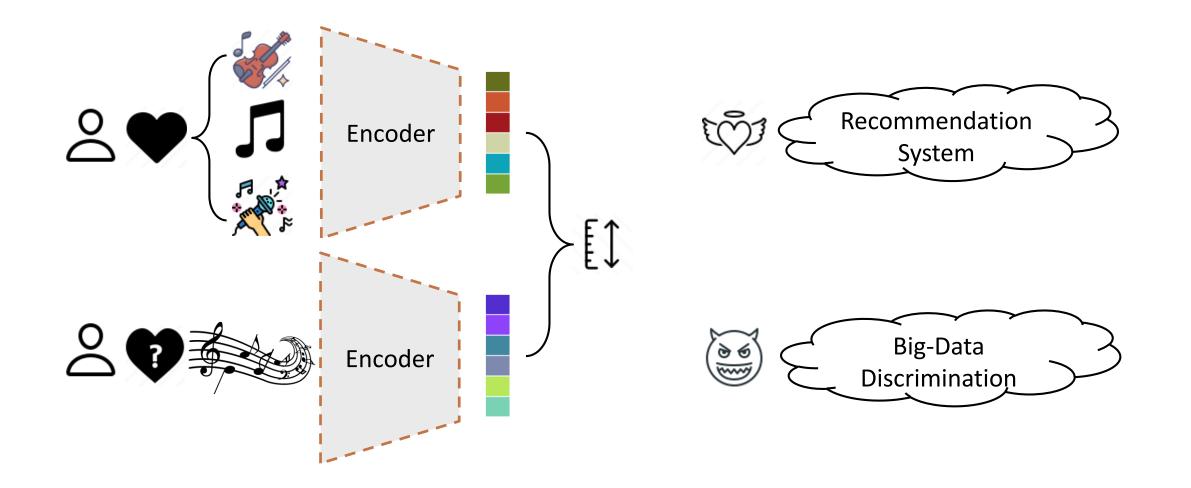
University of Chinese Academy of

- Dimension Reduction
- Mask Trick
 - Denoising, Inpainting
 - Super Resolution (naïve DLSS)
- Not Magic, Merge Info in Other Samples to handle ill-definedness

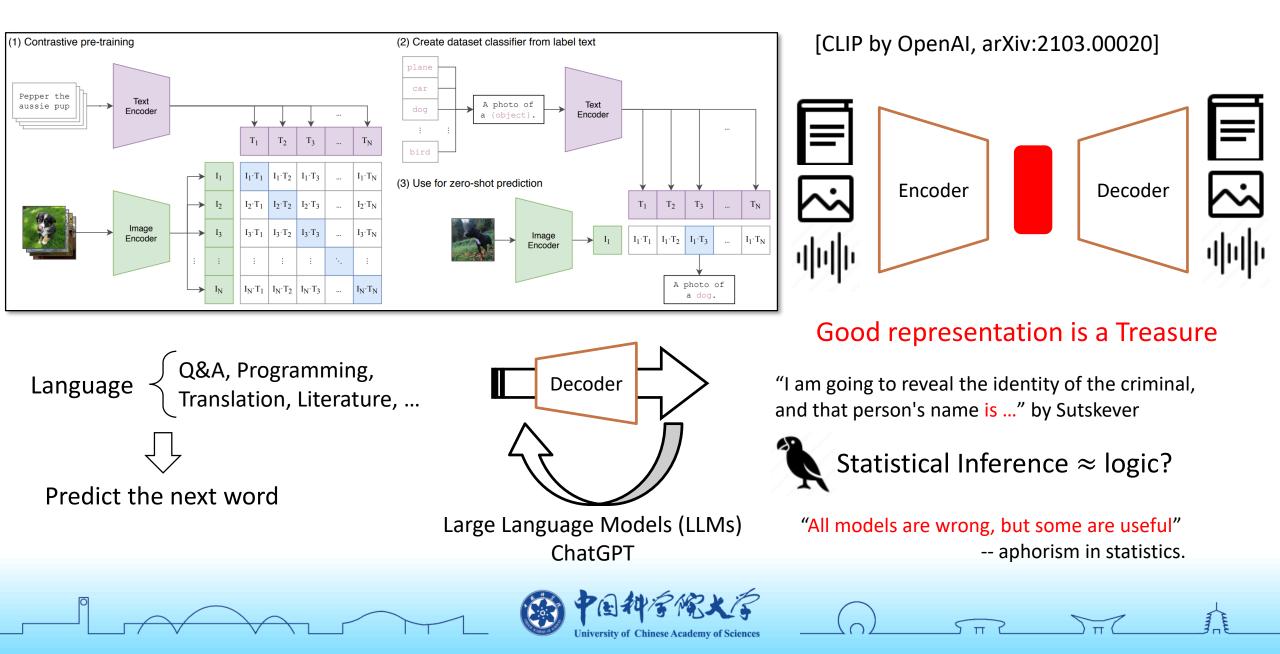


arxiv:1611.09969

Encoder-Decoder Examples



Encoder Decoder Examples

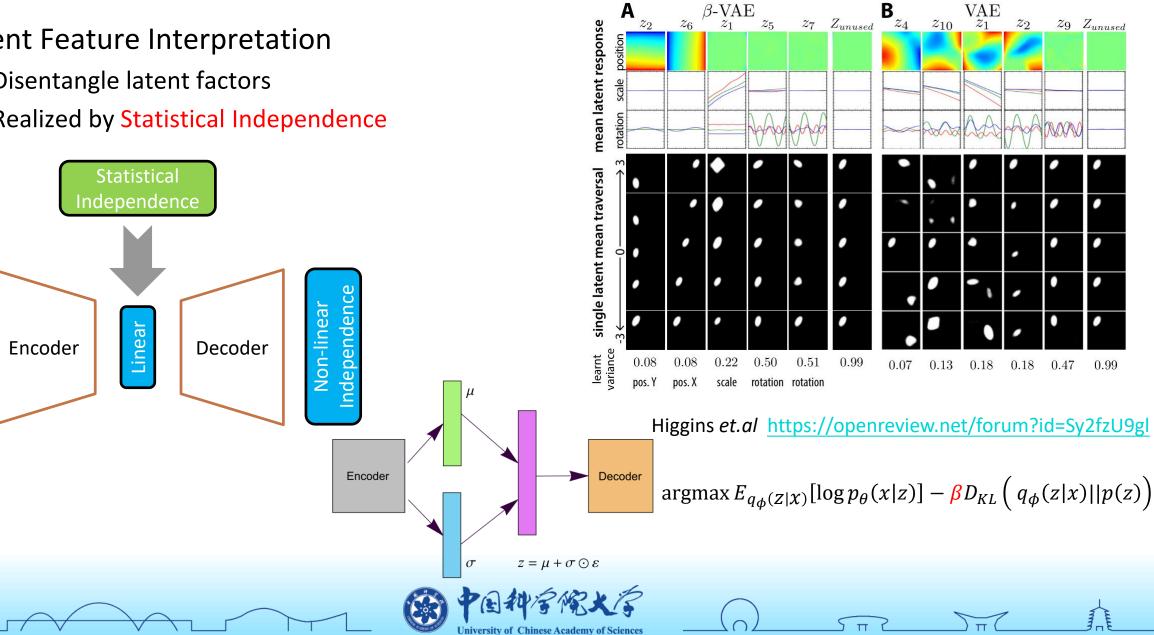


(β)Variational Auto-Encoder(βVAE变分自动编码器)

- Latent Feature Interpretation
 - Disentangle latent factors

Non-Linear

Realized by Statistical Independence



βVAE in Physics

walk~ N(0

Phase 2

Indication o

conservatio

~0.1

PC2

PC1

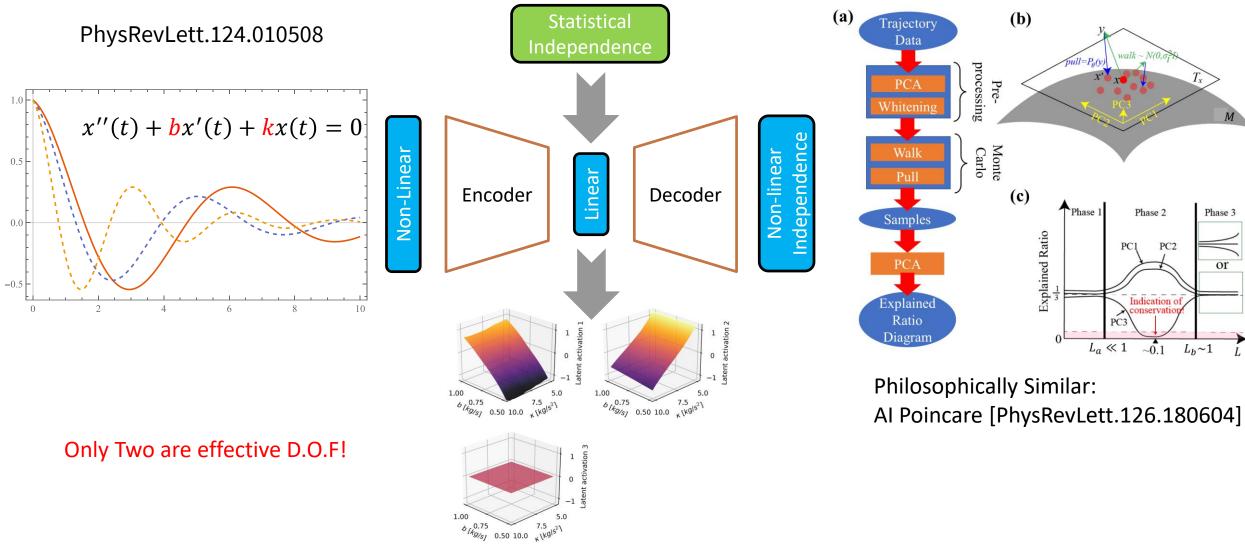
 $L_a \ll 1$

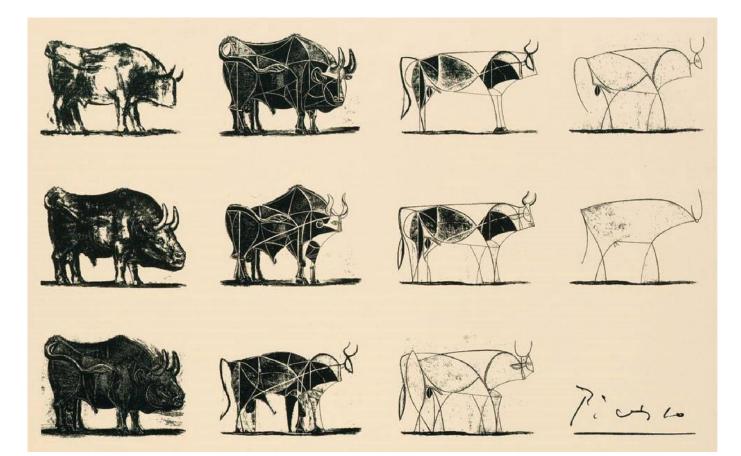
Phase 3

or

 $L_b \sim 1$

Phase





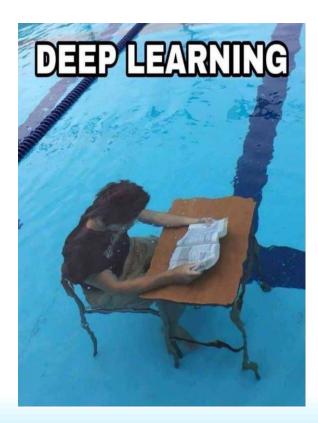
"Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away."

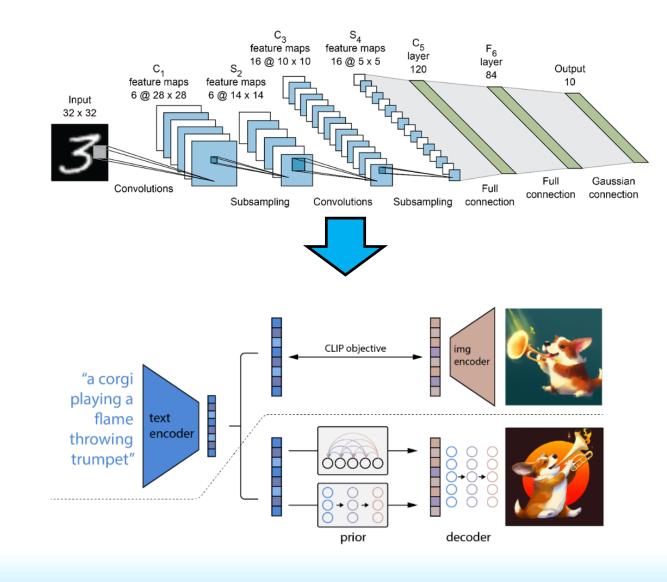
Antoine de Saint-Exupéry 安东尼·德·圣-埃克苏佩里

Parameter Number is Huge

University of Chinese Academy of Science

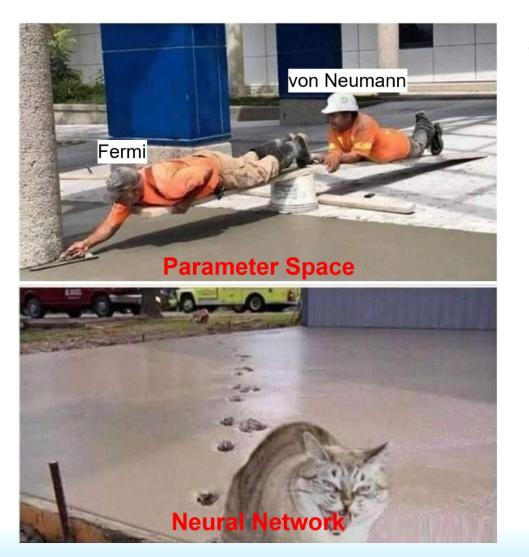
- Modern NN is wide & deep
 - 1998: LeNet-5, 6×10^4
 - 2022: DALL-E 2, 3.5×10^9





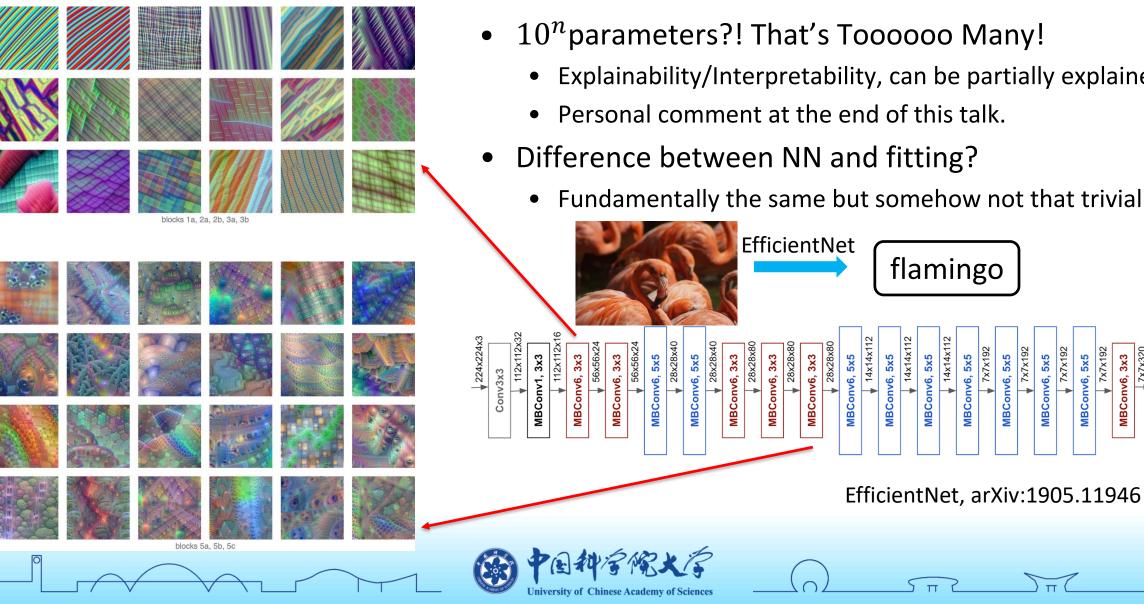
Possible Questions from Physicists

University of Chinese Academy of



- 10ⁿ parameters?! That's Toooooo Many!
 - Explainability/Interpretability, can be partially explained.
 - Personal comment at the end of this talk.

Possible Questions from Physicists



- 10ⁿ parameters?! That's Toooooo Many!
 - Explainability/Interpretability, can be partially explained.
 - Personal comment at the end of this talk.
- Difference between NN and fitting?
 - Fundamentally the same but somehow not that trivial

flamingo

14×14×11

MBConv6, 5x5

/6, 5x5

MBCol

7x7x192

MBConv6, 5x5

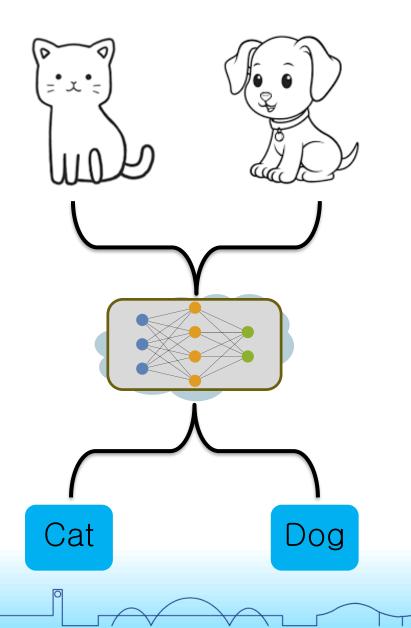
7x7x192

MBConv6, 5x5

7×7×320

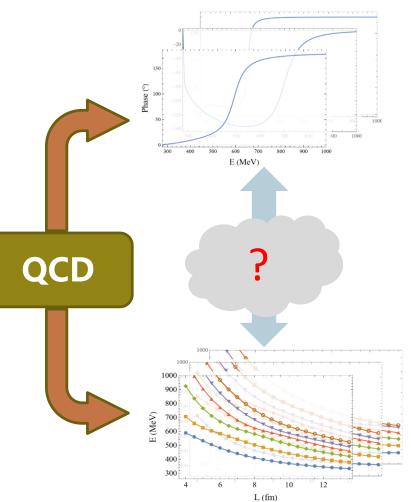
MBConv6, 3x3

Possible Questions from Physicists



- 10ⁿ parameters?! That's Toooooo Many!
 - Explainability/Interpretability, can be partially explained.
 - Personal comment at the end of this talk.
- Difference between NN and fitting?
 - Fundamentally the same but somehow not that trivial
- Why bother?
 - Vague idea becomes solid
 - In the spirit of Duck Test -> NN ~ Underline Function

Motivation of Our Work

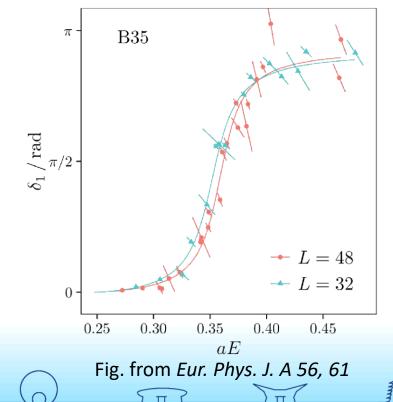


- QCD is hard
 - Phenomenological models/ ChiPT etc.
 - LQCD
- Is there a model-independent link between model-dependent quantities?
 - Hard/Impossible? Martin Lüscher did it in 1986
- One Workflow in LQCD
 - $\left< \hat{O}_i \hat{O}_j \right> \rightarrow E(L) \rightarrow \delta(E)$

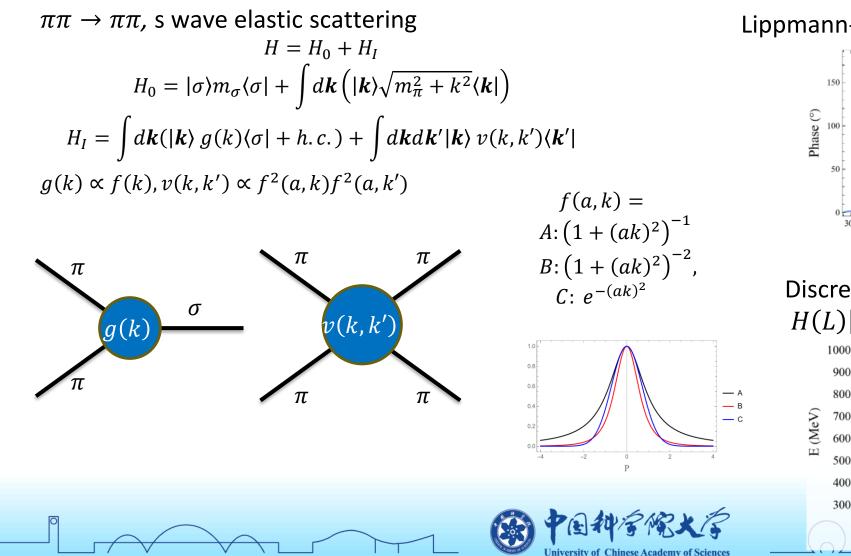
$$\delta(E) = \arctan\left(q \frac{\pi^{3/2}}{\mathcal{L}_{00}(1;q^2)}\right)$$
$$\mathcal{L}_{00}(1;q^2) \sim \frac{1}{\sqrt{4\pi}} \sum_{\vec{n}} \left(\vec{n}^2 - q^2\right)^{-1}$$

University of Chinese Academy of

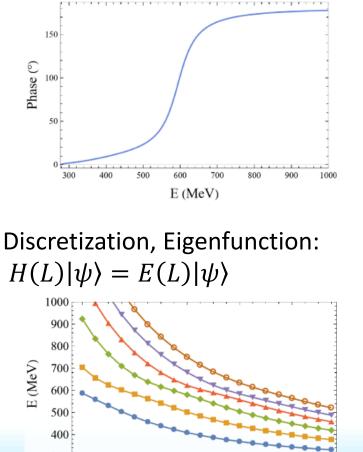
Commun. Math. Phys. 104, 177, Commun. Math. Phys. 105, 153, Nucl. Phys. B 354, 531



Hamiltonian Effective Field Theory(HEFT) & Data Generation J.J. Wu et al. Phys. Rev. C.90.055206



Lippmann-Schwinger equation $\rightarrow T \rightarrow \delta(E)$

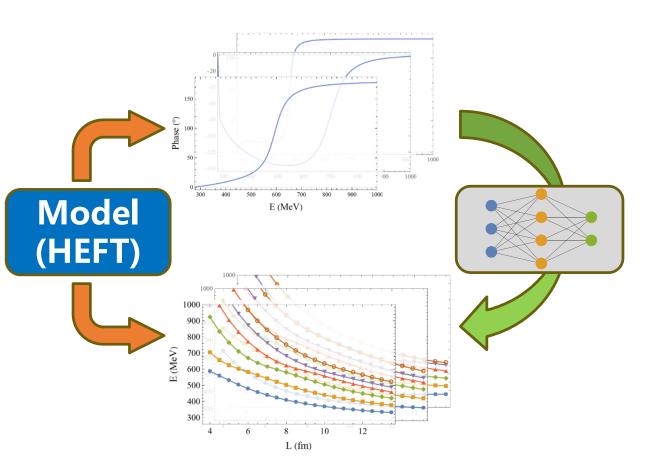


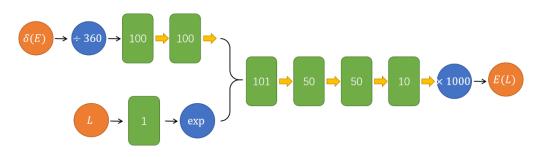
10

L (fm)

12

Hamiltonian Effective Field Theory(HEFT) & Data Generation J.J. Wu *et al.* Phys.Rev.C.90.055206





- $\delta(E)$ contains the full information
- SoftPlus Not ReLU
- Lowest 10 Energy levels
- LossFunction: mean square error
- 2500 $\delta(E)$ for each model, batch siz e 10^4, 4*10^4 epoch

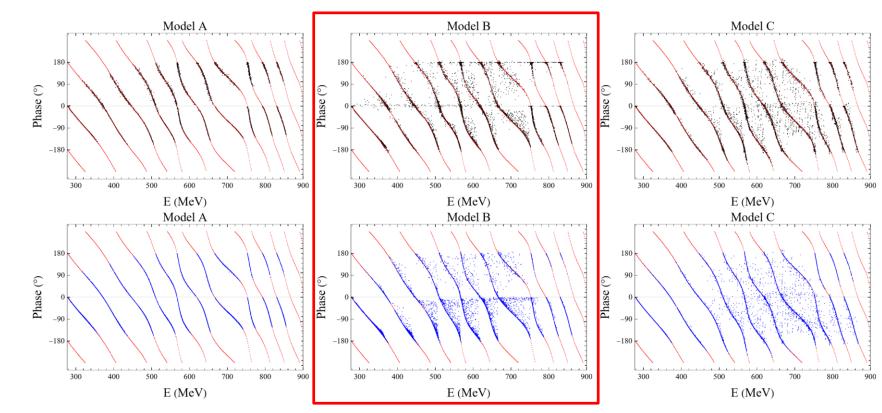
Model-dependent $LF + o(e^{-mL}) = E(L)$

Model-independent

• Check $\delta(E_L)$ against LF

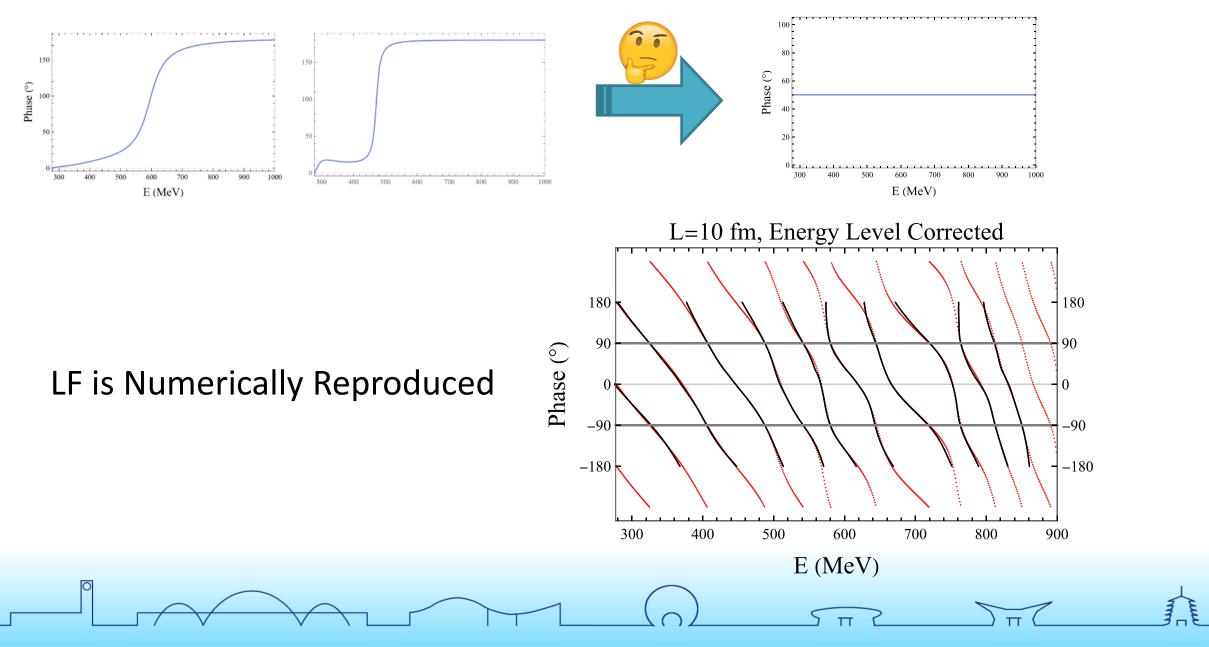
- Model B: NN tries to drag the points towards LF
- NN captures model-independent link (to some degree)

LF NN Model



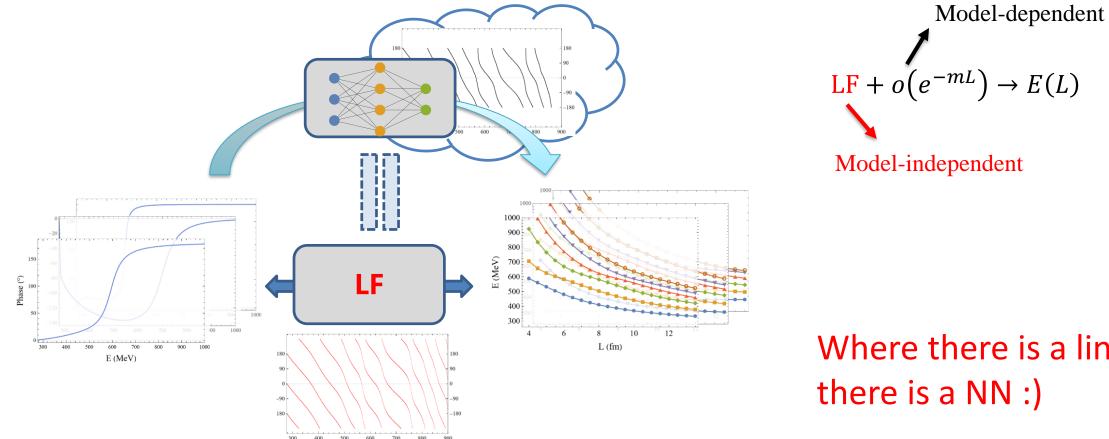
Stronger Evidence?

• Go Far beyond training set & challenge the NN with constant $\delta(E)$



What We Learned

Even $\delta(E)$, E(L) are both model-dependent, NN can extract model-independent link (LF)



Where there is a link,

there is a NN :)

Personal Remarks

11

11

Essentially Optimization Challenges

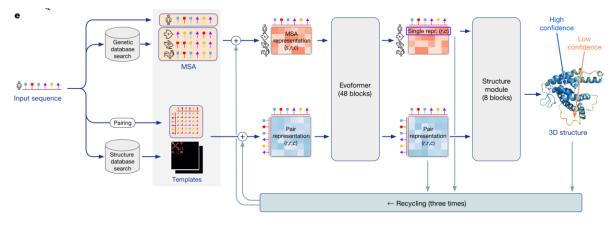
Orthodox Way				
Yes	But			
Beautiful Equation/Theory (SM, Einstein Equation)	Difficult to Solve			
Perturbation Theory (ChiPT)	Limited Usage			
Beyond Perturbation (LQCD)	Various Artifacts			

• • •

Huge Searching Space

...

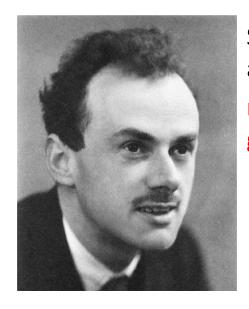
ML is a game changer It peeks the correct answer!



Plenty Protein Data

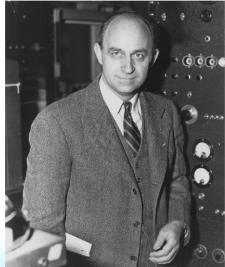
AlphaFold2 [Nature 596, 583]

Outlook

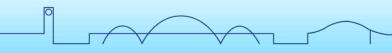


Sensible mathematics involves neglecting a quantity when it is small, not neglecting it just because it is infinitely great and you do not want it!

Schwinger, Feynman, Tomonaga; Wilson, 't Hooft, ...



With four parameters I can fit an elephant, and with five I can make him wiggle his trunk P.W. Anderson, J. Hinton & You audience



Cheese Paradox

Bigger Cheese Bigger Holes Smaller Cheese

All models are wrong, but some are useful

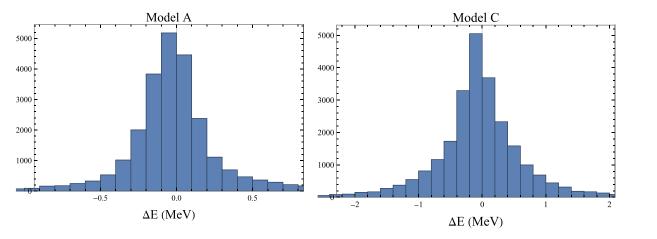
Huge Searching Space

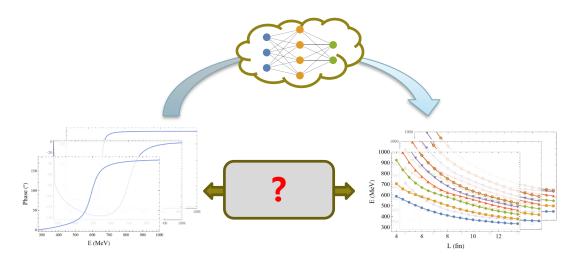
Plenty Protein Data

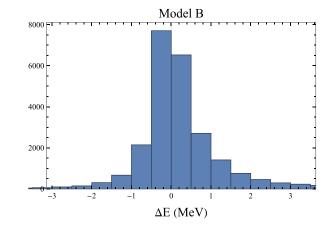
	/	\	
Orthodox Way		ML Way	
Yes	But	Yes	But
Beautiful Equation/Theory (SM, Einstein Equation)	Difficult to Solve	Simple Idea (Relatively)	Many GPU time To Train Resource Hungry
Perturbation Theory (ChiPT)	Limited Usage	It Works! (mostly)	Black Box + Adversarial Examples
Beyond Perturbation (LQCD)	Various Artifacts	Plenty of Data	Data Cleaning

Result Analysis

University of Chinese Academy of





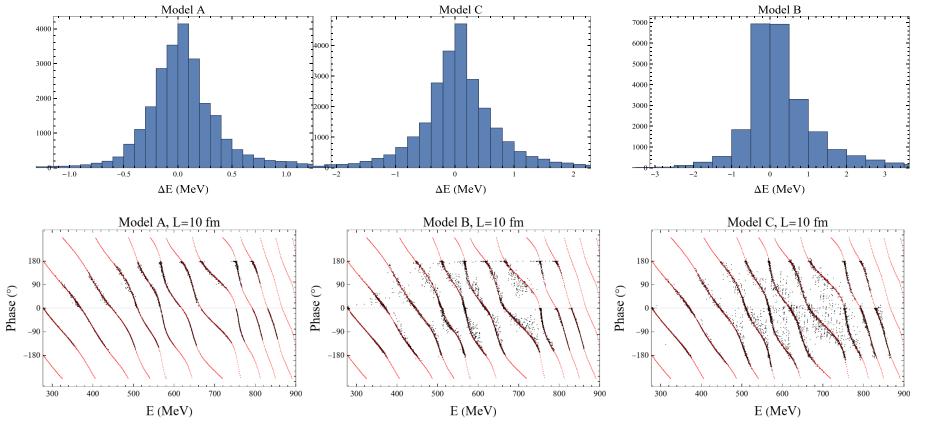


 $\Delta E \coloneqq E_{model} - E_{NN}$

- Decently trained on model A, C
 - $\Delta E(L) < 1 \text{MeV}, E(L) \sim 300 900 \text{ MeV}$
- For model B,
 - as a test set, slightly worse
 - ΔE has heavier-tail on the right
- Signifies the existence of link
- Under the hood, LF is in charge
- -> Check against LF

BackUp

Results after level correction



 $\delta(E)$ is evenly sampled by 100 points in $[2m_{\pi}, 1\text{GeV}]$

 $m_{\sigma} \in [350,700], a \rightarrow c, d \in [0.5,2]$

University of Chinese Academy of Sciences

