

10mm vs. 15mm Crystal Comparison Using CyberFPA

Sun Shengsen on behalf of the CEPC ECAL software working group IHEP, CAS

Nov. 5, 2024

2024/11/05

Introduction

- 10mm and 15mm granularity geometry display
- 10mm **→** 15 mm:
 - Advantages:
 - Similar crystal volume, significant reduction in number of readout channels (956160-405120)*11.5EUR = 6.3M EUR
 - Less dead area: one step per 2 layers for 10mm, one step per layer for 15mm 13.8% → 12.4%
 - Reduce difficulty of mass production of crystal bars
 - Mechanics(cooling) and electronics benefit from larger granularity
 - Disadvantages:
 - Lager granularity deteriorate particle recognition
- Physics performance study
 - One step per 2 layers for 15mm in this study: 1 week
 - Energy correction for cracks needs update

Granularity	Number of Readout Channels
10 mm	956,160
15 mm	405,120

A

A

H

Efficiency of γ Recognition

Veto particles with interactions in front of ECAL

Separation Capability

• γγ

- $E_{\gamma 1} = E_{\gamma 2} = 5 GeV$
- Success separation:
 - ≥2 PFO,
 - $|E_{\gamma} E_{PFO}| < \frac{1}{3}E_{\gamma}$
 - $\left| \theta_{\gamma} \theta_{PFO} \right| < 0.3$ for 10mm ECAL, <0.45 for 15mm ECAL

• γπ

- $E_{\gamma} = E_{\pi^-} = 5 GeV$
- Success separation:
 - 1 charged PFO, \geq 1 neutral PFO
 - $|E_{\gamma} E_{neutral PFO}| < \frac{1}{3}E_{\gamma}$
 - $|y_{gamma} y_{PFO}| < 30mm$

Veto particles with interactions in front of ECAL

Mass Resolution and Efficiency of π^0

Preliminary BMR performance

- Full detector reconstruction: track + ECAL (10 mm / 15 mm) + GS-HCAL
 - Track selection: a BDTG-based selection.
 - ECAL and HCAL digitization are the same for 10 mm and 15 mm.
 - CyberPFA reconstruction: tuned granularity related parameters.
 - ~200k events generated, ~ 50k selected for barrel only.

BMR performance

9

Previous studies about ECAL granularity:

- <u>PandoraPFA</u>: "For 45 GeV jets, the dependence is relatively weak since the confusion term is not the dominant contribution to the resolution. For higher energy jets, a significant degradation in performance is observed with increasing pixel size."
- <u>ArborPFA</u>: "with the ECAL cell size is at 10 mm, the overlapping chance is 1.7% only. However, once the ECAL cell size increases to 20 mm, this overlapping chance rapidly increases by one order of magnitude."

Table 2.	Percentages	of photons	that would	be polluted	by	neighbor particle	ès
----------	-------------	------------	------------	-------------	----	-------------------	----

Cell Size	Critical Separation Distance with Arbor	Percentage of $Z \rightarrow \tau^+ \tau^-$
1 mm	4 mm	0.07%
5 mm	8 mm	0.30%
10 mm	16 mm	1.70%
20 mm	38 mm	19.6%

Table 3. Resolution of reconstructed Higgs boson mass through vvHiggs, $Higgs \rightarrow gluons$ events with different cell size at CEPC_v1 geometry.

Silicon sensor cell size	Higgs boson mass resolution (Statistic error only)
5 mm	3.74 ± 0.02 %
10 mm	$3.75 \pm 0.02 \%$
20 mm	3.93 ± 0.02 %

Plan of CyberPFA

Short term goals (1 months)

- Granularity 15mm*15mm*400mm crystal ECAL Comments 4 / ECAL Issues 5 / Calo Recommendations 2
- Endcap of ECAL \rightarrow Preliminary result \rightarrow Further tuning Software Recommendation 3
- Performance studies ECAL Comments 1 / Calo Recommendations 3/ Software Recommendation 2
 - Single particles (γ , π^0 , π^{\pm} , K_L/n) for detector performance
 - Complex physical processes $(H/Z \rightarrow udscb g, w/ ISR etc.)$
- PID information

Medium term goals (5 months)

- Sequential improvements of tracking ECAL Comments 1
- Beam-induced backgrounds analysis
- Calibration and correction of energy deposition Performance Recommendation 7
- Optimization of HCAL algorithm ECAL Comments 1

Long term goals (2 years)

- Optimization of ambiguity removal algorithm nents 1
 ECAL energy splitting ECAL Comments 1

Performance Recommendation 2