


Progress of CEPC ref-TDR TDAQ

Fei Li
On behalf of CEPC TDAQ Group

Progress of TDAQ

- TDAQ meeting
 - Oct. 31th (Thu. afternoon), https://indico.ihep.ac.cn/event/23791/
- Discussion of IDRC comments and recommendations
 - Track trigger for Cal & Muon detector
 - Low energy events: gamma-gamma collisions
 - Include in pair production of background simulation
- Trigger simulation study
 - BDT: energy + centre of gravity for Ecal&Hcal
 - Higgs: 1.34MHz->3.4kHz
 - Trigger efficiency 95%->99.9%, background 5%->0.25%
 - Tracking @ Muon detector
- Trigger rate discussion
- Work plan for TDR

Trigger & Data Rate

- Higgs 240GeV(50MW)
 - Bunch cross rate: 1.34(2.9) MHz
 - Physical event rate: 8 Hz (Higgs: 0.02 Hz)
- Z pole 91GeV(10MW)
 - Bunch cross rate: 12(14.5) MHz
 - Physical event rate: 13.2 kHz
 - L1 trigger rate: 120 kHz, DAQ: 240 GB/s
 - HLT rate: 25 kHz (50 GB/s)
- Z pole 91GeV(50MW)
 - Bunch cross rate: 39.4(43.3) MHz
 - Physical event rate: 66 kHz
 - L1 trigger rate: 400 kHz, DAQ: 800 GB/s
 - HLT rate: 100 kHz (200GB/s),

	Higgs	2	Z	W	tť
SR power per beam (MW)	30	30	10	30	30
Bunch number	268	11934	3978	1297	35
Bunch spacing (ns)	576.9 (×25)	23.1(×1)	69.2(×3)	253.8(×11)	4523.1(×196)
Train gap (%)	54	17	17	1	53
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	38	16	0.5

	Higgs	Z	W	tť					
SR power per beam (MW)	50								
Bunch number	446	13104	2162	58					
Danish angaing (na)	346.2	23.1	138.5	2700.0					
Bunch spacing (ns)	(×15)	(×1)	(×6)	(×117)					
Train gap (%)	54	9	10	53					
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8					

- Compress 99% background -> 1% @ L1
- Compress 90% background -> 0.1% @ HLT
- Data size per BX@ Higgs: 300 Kbyte
 - Unknown @Z
- Event size < 2 MByte</p>
 - Related to occupancy and read out window

Working Plan for TDR

- 先根据河南技术方案修改一个版本,一周。后面三周扩充内容。
- 模拟:
 - 第一周:事例率 (Cal+Muon), muon tracking
 - 双gamma光子应对策略
 - 第二周:L1算法(Cal+Muon)算法, TDR editing
 - 第三周: TPC、OTK tracking, low lum. Z background.
 - 第四周: Global trigger start, TDR draft 0.1
 - 12月, TDR draft 1.0
 - HLT algorithm 结果
 - Global trigger
 - trigger efficiency

Ch	apter	12 TDAQ and online	
	12.1	Introduction	
	12.2	Requirements and Design C	Considerations
		12.2.1 Requirements	
		12.2.2 Event rate & backgr	round rate estimation
		12.2.3 Technology survey	
		12.2.4 TDAQ policy consid	deration
		12.2.5 TDAQ Interface with	th electronics
	12.3	Trigger Simulation and Alg	orithms
	12.4	Hardware Trigger	
		12.4.1 Previous experience	e on large facilities
d		12.4.2 System architecture	
<u></u>		12.4.3 Common Trigger B	oard
		12.4.4 Trigger Control and	Distribution
		12.4.5 Resource cost estim	nation
	12.5	Software and High Level Tr	rigger
	12.6	Data Acquisition System .	
		12.6.1 Previous experience	e on large facilities
		12.6.2 Overview of System	n Functionality
		12.6.3 Detector Readout .	
		12.6.4 Dataflow	
		12.6.5 Network	
		12.6.6 Online Software .	
	12.7	Detector Control System .	
	12.9	Summary	4

Working Plan for TDR

■ 硬件触发

- 11月
 - Hardware trigger structure design for TDR
 - trigger board/ TTC detailing
 - BEE interface
 - basic trigger primitives
- 12月:
 - trigger primitives for each L1 detectors
 - common trigger board structure finalize
 - L1 algorithm deploment design, boards num

Working Plan for TDR

HLT

- 11月
 - 编辑一页的FPGA加速
 - GPU,概念性描述
 - 离线软件状况

DAQ

- 11月
 - system architecture
 - software layer data flow
 - RDMA/GPU/FPGA/Mem buffer
- 12月
 - Network/hardware
 - Online software

DCS

- 11月
 - DCS requirement from each detectors
 - farmwrok design

ECS

- 11月
 - framework design
 - control network
- 12月
 - IT infrastructure
 - hardware
 - control/computing room
 - monitoring

Backup

Findings--revised

- The baseline plan is to transmit the full raw data to the front-end electronics and connect the trigger to the back-end electronics.
 - Transmit the full raw data from front-end electronics(on-detector) to backend electronics(off-detector)
- A hierarchical trigger scheme is foreseen to bring event data rates down from ~3MHz to ~1kHz in ZH running and ~40MHz to ~100kHz at the Z pole.
 - The bunch cross rate in ZH running is about 1.34 MHz when bunch space is 346.2 ns (2.9 MHz) and there is 54% bunch train gap.

Comments

- The detailed (bottom-up) design of the TDAQ must await further details on the sub detector design.
 - We will closely follow the design of each sub detector. Especially background study and data rate estimation from each sub detectors.
- Work on the trigger primitives is needed to bring the rate down to an acceptable input for the second-level trigger, and to inform further planning for the processing farms in the DAQ design. Should it be needed, a track trigger could provide a powerful additional primitive.
 - More simulation works on trigger primitive and more discussion with physics and detector experts are needed. Track trigger simulation will be next main work.
- High-level triggering will also need to weigh the physics-versus-bandwidth tradeoff for lower-energy events, e.g. from gamma-gamma collisions.
 - We need more study for low-energy events of beam induced background. And few gamma-gamma collisions are included in the available background sample data.

Recommendations

- A simple simulation of sub detector-based trigger inputs using simple, robust algorithms should be prioritized to allow more detailed specification of the requirements for TDAQ hardware and identify areas that need further attention. This should include an appropriate safety factor for beam-related backgrounds.
 - Basic trigger simulation study for each sub detectors are in progress.
 - And the safety factor needs to be discussed carefully.
- Further work should include an evaluation of benefits of implementing a track trigger as a complement to the calorimeter and muon primitives, and to clarify the bandwidth foreseen for gamma-gamma events.
 - We will move forward this after finish simple trigger simulation.

Event Rate

- Higgs 240GeV(30MW/50MW)
 - BX rate: 0.8(1.74)/1.34(2.9) MHz
 - Physical event rate: 5Hz/8Hz (Higgs: 0.02Hz) Higgs, Sample generation for CEPC, August 24, 2020

Process $e^+e^- \rightarrow e^+e^-$

 $Luminosity[ab^{-1}]$

5.6

5.6

5.6

5.6

5.6

Final states

 $e^{+}e^{-}$

 $\mu^{+}\mu^{-}$

 $\nu \overline{\nu}$

- Z pole 91GeV(10MW/50MW)
 - BX rate: 12(14.5)/39.4(43.3) MHz
 - Physical event rate: 13.2kHz/66kHz

	Higgs	2	Z	W	tť
SR power per beam (MW)	30	30	10	30	30
Bunch number	268	11934	3978	1297	35
Bunch spacing (ns)	576.9 (×25)	23.1(×1)	69.2(×3)	253.8(×11)	4523.1(×196)
Train gap (%)	54	17	17	1	53
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	38	16	0.5

	Higgs	Z	W	tť
SR power per beam (MW)		50)	
Bunch number	446	13104	2162	58
Deve de marsine (con)	346.2	23.1	138.5	2700.0
Bunch spacing (ns)	(×15)	(×1)	(×6)	(×117)
Train gap (%)	54	9	10	53
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8

					Z	W/	·W-	ZH	possii t t		
过程	xsection(nb)	百分比	事例率kHz	E	٠ <u>. </u>		m			<i>.</i>	
habha	0. 0586	0.001371951	0.068597543	107	qq						nts
uon	1.5361	0.035963374	1.798168703		N;						f eve
au	1.5249	0.035701158	1. 78505791	106							nber of 5ab ⁻¹
q	30. 6522	0. 717633315	35. 88166573	105		+μ-					Number of events for 5ab ⁻¹
3子中微子	2. 9607	0.069316296	3. 465814777				W+	w -			
uon中微子	2. 9896	0.069992906	3. 499645306	10 ⁴	Single	7					5×10^7
au中微子	2. 9909	0.070023342	3.501167095	103			(Z		_		
7微子总	8. 9411	0. 209330202	10. 46651012	10 ²	ingle V	v,		ZH	tī		5×10 ⁵
4.共	42. 7129	1	50					W fus	ion	$\overline{}$	
		亮度		101				Z fu	sion		
OMW		1. 15E+36	4. 91E+01	1							5×10^3
O MW		1. 92E+36	8. 20E+01	50	100	150	200	250	300 350	400	n
	-	·		50	.00	150			220 230	400	•

X-sections(fb)

24770.90

5332.71

4752.89

54099.51

54106.86

Events generate

4000000

4000000

4000000

3999999

9999023

Scale factor

346.79%

746.60%

665,40%

757.39%

303.03%

Events expected

138717040

29863176

26616184

302957256

302998416

Z pole, ref: MC /cefs/data/stdhep/CEPC91/ 2fermions/wi_ISR_20220618_50M/2fermions/

Trigger Rate

- Compress 99% background -> 1% @ L1
- Compress 90% background -> 0.1% @ HLT
- Related to occupancy and read out windowZ pole 91GeV(10MW)
 - DAQ: 240 GB/s, storage rate: 25 kHz (50 GB/s)
- Z pole 91GeV(50MW)
 - DAQ: 800 GB/s, storage rate: 100 kHz (200GB/s)
- Data size per BX
 - 300Kbytes @ Higgs
 - Unknown @Z
- Event size < 2 MByte</p>

	Higgs	Z(10MW)	Z(50MW)	W	tt	
Bunch cross rate(MHz)	1.34	12	39.4	6.5	0.18	
Phy. event rate(kHz)	0.008	13.2	66			
L1 trigger rate(kHz)	1.34	120	400			
High level trigger rate(kHz)	0.14	25	100			

Data Rate

- Data rate before trigger
 - <1 TB/s @ Higgs</p>
 - Several TB/s @ Z
- L1 trigger rate
 - O(1k) Hz @ Higgs
 - O(100k) Hz @ Z
- Event size < 2 MB</p>
 - Related to occupancy and read out window
- Storage rate after HLT
 - <100 Hz(200 MB/s)@ Higgs
 - 100 kHz (200 GB/s)@ Z

r		Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ОТКЕ	TPC	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon			
	Channels per chip	512*102 4	512*128	1024	17	28	128	8~16							
	Data Width /hit	32bit	42bit	32bit	48	bit	48bit	48bit							
	Avg. data rate / chip	0.18Gbp s/chip, 1Gbps/c hip inner	3.53Mb ps/chip	21.5Mbp s/chip	2.9Mbp s/chip	38.8Mb ps/chip	~70Mb ps/mod ule Inmost	10kHz/ch	10kHz/ch	5kHz/chann el	5kHz/chann el	10kHz/c hannel			
	Detector Channel/modu le	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 module s	11520 chips 720 module s	492 Module	0.96M chn ~60000 chips 480 modules	0.39 M chn	3.38M chn 5536 aggregation board	2.24M chn 1536 Aggregation board	43,176 chn, 288 modules			
	Avg Data Vol before trigger	474.2 Gbps	101.7 Gbps	298.8 Gbps	249.1 Gbps	27.9 Gbps	34.4 Gbps	460.8 Gbps	187 Gbps	811.2 Gbps	537.6 Gbps	24 Gbps			
	Occupancy(%)	0.022	0.025	(Strip)	0.35(Strip) 0.0028 0.58 0.002						002	0.038			
	Sum	3.2 Tbps = 400GB/s													

Collected from each detectors @Higgs