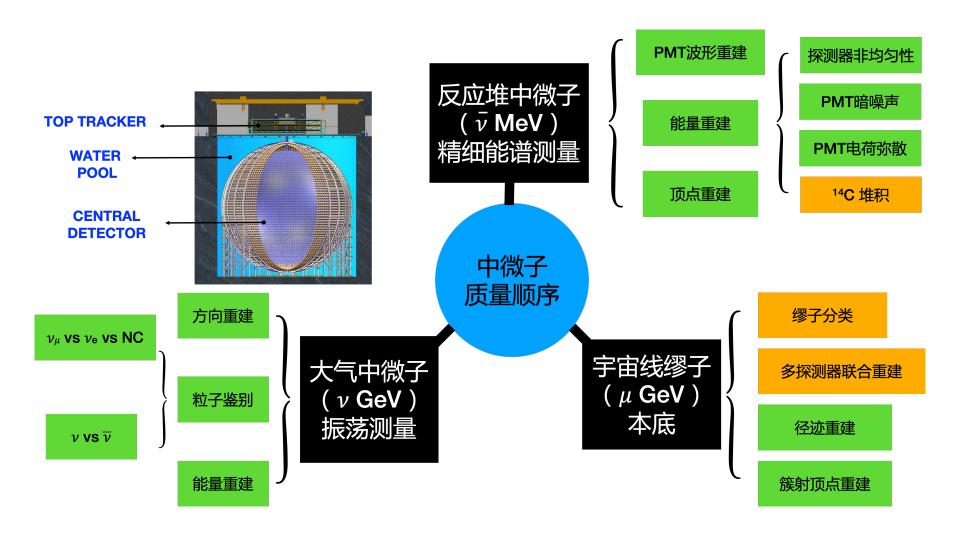
2024考核报告

中微子一组罗武鸣

2024.11.21

提纲

- □岗位职责
- □本年度工作情况
 - ■研究任务完成情况
 - ■研究成果与经费
 - □学术交流,学术发展规划
 - □公共服务
 - □其他贡献
- □存在问题
- □工作计划

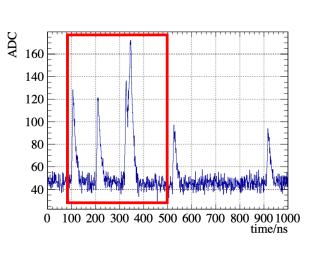

一, 岗位职责

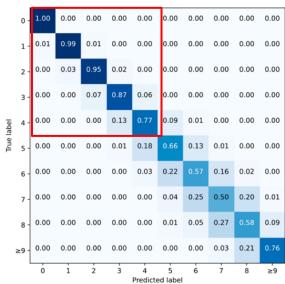
- □负责JUNO实验的重建及物理研究
- □组建研究团队

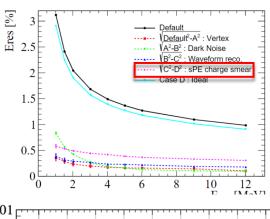
- □培养研究生博士生
- □学术交流与合作

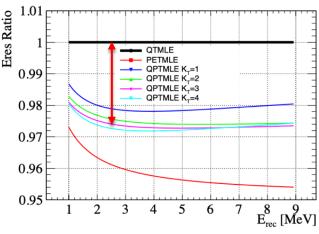
4 二,本年度工作情况

2.1 研究任务


EPJC, 完成第一轮意见回复

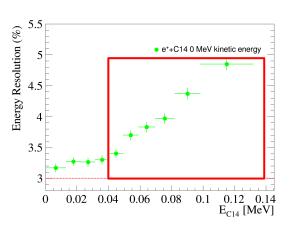

□ 进一步提升JUNO能量分辨率:降低PMT电荷弥散的影响


□ 重要性:影响分辨率的主要因素之一

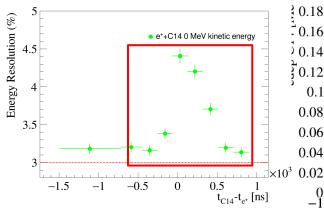

■ 创新性: 利用机器学习算法数光子

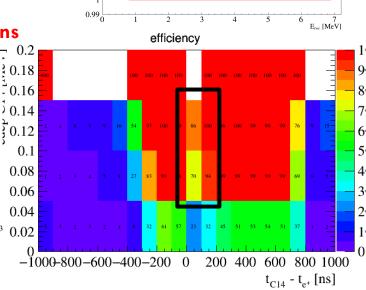
■ 相对提升2%到2.8%

」进一步提升JUNO能量分辨率:降低14C pileUp的影响

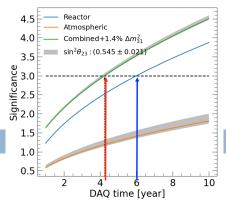

□ 重要性:影响分辨率的主要因素之一

□ 创新性: 利用机器学习算法鉴别/重建

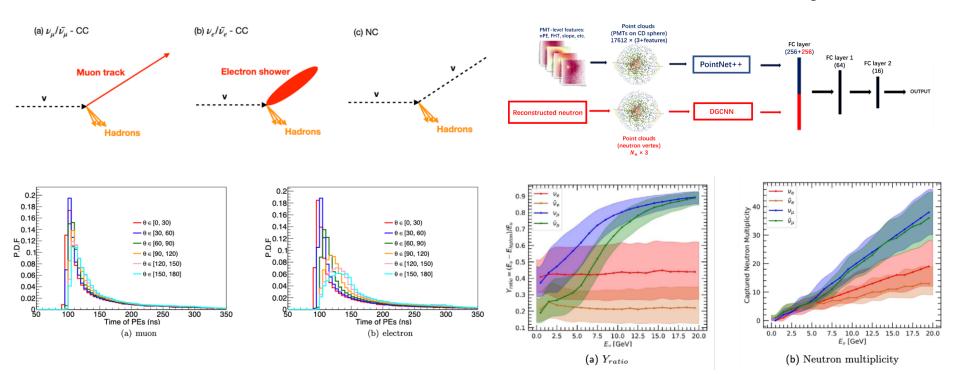

□ 策略: 1.检查总体影响, 2.找出关键¹⁴C事例


■ 3.利用ML鉴别, 4.利用ML重建

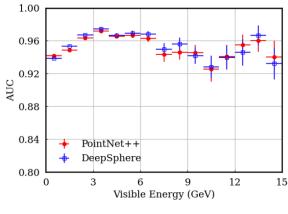
¹⁴C energy > 0.05 MeV



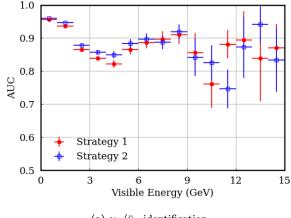
¹⁴C mixing time: -250 ns - 510 ns



% 1.03 1.02 1.01 e mixing 40 kHz 14C



- □ 大气中微子的粒子鉴别
 - 重要性:反应堆+大气联合分析能进一步提高NMO灵敏度, 粒子鉴别 (PID) 是大气中微子测量的关键之一
 - □ 挑战性: 既无径迹 (TPC), 也无光环 (水切伦科夫)
 - □创新性:波形特征+事例特征提取 → Machine Learning → PID



4.5 Reactor Atmospheric
4.0 Combined $\pm 1.4\% \Delta m_{31}^2$ 3.5 $\sin^2\theta_{23}:(0.545\pm0.021)$ 2.5 $\cos^2\theta_{23}:(0.545\pm0.021)$ 1.5 $\cos^2\theta_{23}:(0.545\pm0.021)$ 1.5 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.7 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.8 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.9 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.1 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.1 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.3 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.5 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.6 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.7 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.8 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.9 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.9 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.0 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.1 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.1 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.3 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.5 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.7 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.8 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.9 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.1 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$ 2.2 $\cos^2\theta_{23}:(0.545\pm0.021)$


- □ 大气中微子的粒子鉴别
 - 重要性:反应堆+大气联合分析能进一步提高NMO灵敏度, 粒子鉴别(PID)是大气中微子测量的关键之一
 - □ 挑战性: 既无径迹 (TPC), 也无光环 (水切伦科夫)
 - □创新性:波形特征+事例特征提取 → Machine Learning → PID

CC-e vs CC- μ vs NC

(a) $\nu_{\mu}/\bar{\nu}_{\mu}$ identification

(b) $\nu_e/\bar{\nu}_e$ identification

- □ WaterPool大气中微子的重建/鉴别及探测器升级
 - 重要性: WP大气事例能提供额外统计量(35kton)
 - □挑战性: PMT数目少(2400), 重建/鉴别困难
 - □创新性:合作组计划安装额外PMT,提供不同方案

2.2 研究成果与经费情况

- First attempt of directionality reconstruction for atmospheric neutrinos in a large homogeneous liquid scintillator detector, (Phys.Rev.D 109 (2024) 5, 052005)
- □ Prediction of energy resolution in the JUNO Experiment, (CPC编辑推 荐封面文章)

投稿到《中国物理C》的文章"B Prediction of Energy Resolution in the JUNO Experiment" 经编委推荐为2025年第1期封面文章,

- Machine-Learning based photon counting for PMT waveforms and its application to the improvement of the energy resolution in large liquid scintillator detectors, (EPJC, 完成第一轮评审)
- Neutrino type identification of atmospheric neutrinos in a large homogeneous liquid scintillator detector, (合作组内部审核, 计划投 PRD)

2.2 研究成果与经费情况

□经费情况

项目类别	项目名称	角色	起止时间	经费(万)
中国科学院稳定支持 基础研究领域青年团 队计划	中微子质量顺序和马约拉纳属性	课题骨干	23/7—28/6	2000
国家重点研发计划- 大科学装置前沿研究	高精度反应堆中微子 振荡研究	课题骨干	23/11—28/10	1700
国家重点研发计划- 政府间国际科技创新 合作	江门中微子实验的中 微子振荡物理研究	课题负责人	24/9—28/8	2150
所创新	机器学习在实验高能物理中的应用	课题骨干	23/1—25/12	150
面上项目	江门中微子实验的高 精度事例重建	负责人	22/125/12	63

2.3 学术交流

报告人	题目	会议	报告类型
罗武鸣	Overview of Machine Learning applications in JUNO	ICHEP 2024	口头
	Machine Learning based photon counting for PMT waveforms and its application to the energy reconstruction in JUNO	Neutrino 2024	海报
刘佳熙 (学生)	Machine learning-based particle identification of atmospheric neutrinos in JUNO	ACAT 2024	口头
	Flavor identification of atmospheric neutrinos in JUNO	ICHEP 2024	海报
合作者	Machine learning-based particle identification of atmospheric neutrinos in JUNO	Neutrino 2024	海报

2.4 公共服务

□ 中心EPD Seminar组织*

□研究生各类奖项评选

□中心博士后管理小组(招聘/交流/管理)*

□组织研究生季度考核

2.5 人才培养/团队建设

- □学生培养
 - □ 蒋炜: 2024/5 毕业, (北京算能科技有限公司)
 - □刘佳熙20级: FPGA波形重建算法开发,大气中微 子重建以及振荡分析,缪子重建
 - □吴肇祥22级(联合指导): 低能重建优化
- □博后培养/人才引进
 - □袁朝阳24/8: 高能区重建和大气中微子物理研究
 - □ 宫冠达24/4 (联合指导): 反应堆中微子重建优化

三,存在问题

- □团队建设
 - □人员规模不够稳定
 - ■招聘博士后困难(待遇, 职业发展等等)
 - □所里学生资源有限
- □进一步加强国际/国内学术交流访问
- □论文产出更高效

四,工作计划

- □团队建设
 - ■继续招聘~2名博士后
 - □指导博士生:刘佳熙20届;吴肇祥22届
- □科学研究
 - ■软件:进一步优化反应堆中微子能区重建性能; GeV能区缪子簇射重建算法开发;GeV大气中微子 重建及粒子鉴别的优化
 - □物理分析:完成大气中微子振荡分析;开展IBD关 联信号/muon关联本底的研究
 - □ JUNO 测试/运行阶段探测器事例重建性能的研究以及数据处理流程的完善

谢谢!