

MIP2025 @ HNU

Development of the muEDM Muon Trigger Detector

WONG Guan Ming, HU Tianqi

on behalf of the *muEDM* collaboration

16th May 2025

Why measure the (μ) EDM?

*also in these models:

Muon specific 2HDM PLB 831 (2022) 137194 Radiative muon mass model JHEP02 (2023) 234 (4) < 3 >

muEDM experiment

muEDM Signal

Animation by C. Dustov

133.1 / 143 0.7877

Muon trigger detector (TrigDet)

- <u>Fast</u> and <u>precise</u> trigger system
- Responsible for triggering the pulse kicker to store muons
- Trigger: Gate in <u>anti-coincidence</u> with Aperture

Detector requirements

- **Fast**: time delay between trigger and pulse kick, t_{delay} < 105ns
- **Precise**: triggers selectively on storable muons, maximise acceptance and rejection rate $\epsilon_a \ge 95\%$ (statistics) $\epsilon_r \ge 98\%$ (pulse kicker max. load)
- High detection efficiency for incoming muons
- Non-invasive detection of incoming muons
- Compact mechanical design to be accommodated within a < 150 mm space

Muon trigger detector (TrigDet)

Conceptual sketch of the Phase-1 trigger detector

Gate design

Conceptual sketch of the Phase-1 trigger detector

Gate design

Gate design optimised for

- Number of optical photons collected
- Scattering angle induced on μ⁺ exiting the Gate
- Optimisation by studying
 - Gate thickness vs exit angle
 - Gate thickness vs optical photons collected
- Simulation results indicates
 0.1 mm Gate thickness to be optimal

TrigDet proof-of-concept

- Demonstrate anti-coincidence logic
 - Muons passing through gate but not hitting telescopes
- Beam within acceptance selected with anti-coincidence logic
- Composed of plastic scintillators and light-readout by SiPMs (*fast*)
- Test beam 2022 at PSI π E1 beamline

TrigDet proof-of-concept

Simulation validation of TrigDet-TB22 detector response

Test beam model in simulation

Horizontal RMS Phase Space (Z=-65 mm)

Vertical RMS Phase Space (Z=-65 mm)

Measured beam profiles reproduced in simulation for input of detector performance studies

121.3

photon distribution

Reproduction of relative event rates

TrigDet proof-of-concept

Simulation validation of TrigDet-TB22 detector response

Summary of TrigDet-TB22 (arXiv: 2501.01546) ✓ Demonstrates the <u>anti-coincidence scheme</u> and <u>thin Gate design</u> ✓ Establishes the design intuition for Phase-1 TrigDet

Aperture design

Conceptual sketch of the Phase-1 trigger detector

Simulation-based design

- TrigDet designed with G4beamline and musrSim
- To determine Aperture geometry and dimensions
 - Aperture openings should be optimised for maximum acceptance ϵ_a and rejection rate ϵ_r
- Workflow overview:

Simulation workflow

Simulation workflow

Design optimisation

- Event topology studied by obtaining relative event rates
- Event rates used to deduce:

```
Acceptance rate,

\epsilon_a = \frac{\# \ storable \ \mu^+ \ not \ hitting \ Aperture}{\# \ Actual \ storable \ \mu^+};
```

Rejection rate,

 $\epsilon_r = \frac{\# non-storable \ \mu^+ \ hitting \ Aperture}{\# Actual \ non-storable \ \mu^+};$

Designs are optimised for ϵ_a & ϵ_r

Truth level event rates

*with multiple scattering from Gate accounted

 $\epsilon_{a} = \frac{\# \ storable \ \mu^{+} \ not \ hitting \ Aperture}{\# \ Actual \ storable \ \mu^{+}}$ $\epsilon_{r} = \frac{\# \ non - \ storable \ \mu^{+} \ hitting \ Aperture}{\# \ Actual \ non - \ storable \ \mu^{+}}$

	<i>E</i> _a (%)	ε _r (%)
2H	97.93	75.72
3H	96.81	94.18
3Hsl	99.34	88.28

Aperture Hit (Storable)

- Aperture Hit (Non-Storable)
- No Aperture Hit (Storable)
- No Aperture Hit (Non-Storable)

< 20 >

Test beam design

- TrigDet-TB24: design variant to accommodate PSI October 2024 test beam condition
 - Magnetic field: 3 T → 0.78 T (superconducting injection channels not ready, 3 T produces strong fringe field)
 - Beam momentum: 28 MeV/c → 14.6 MeV/c (retain same track orbit radius from the scaled down B-field)
- Aperture geometry strongly dependent on B-field and beam momentum
- TB24 conditions inflict larger
 Aperture opening

Detector construction

Aperture fabrication: high precision hole drilling with in-house CNC machine

- Eljen EJ-200 plastic scintillator cube processed by USTC workshop
- Slabs of plastic scintillators processed in the dimensions 135 mm * 130 mm * 5 mm

- CAD model of Aperture imported to CNC cutter terminal
- 0.1 mm precision cutting achieved with CNC cutter and dedicated support platform

Detector construction

Fast electronics

Conceptual sketch of the Phase-1 trigger detector

Fast circuit schematics

Fast electronics prototype

transmitted to

Gate PCB

Pre-amp **SiPM SiPM** Interface with the gate HV Aperture signal **SiPM SiPM** SiPM 🖉 🧶 I SiPM

Gate PCB

- Four channel read-out of Gate SiPMs
- Produces LVTTL signal on anti-coincidence

Aperture PCB

- Six SiPMs in parallel
- Single channel read-out

Test beam 2024 (TB24)

Test spiral injection

- Clockwise (CW) and counterclockwise (CCW) injection
- Momentum control when switching between CW and CCW injection
- Characterise Trigger
 Detector
 - Performance of fast electronics readout
 - Acceptance rate and rejection rate
 - Induced background studies

Test beam 2024 (TB24)

Test spiral injection

- Clockwise (CW) and counterclockwise (CCW) injection
- Momentum control when switching between CW and CCW injection

Characterise Trigger Detector

- Performance of fast electronics readout
- Acceptance rate and rejection rate
- Induced background studies

Test beam 2024 results

Analysis goals

- Obtain charge distribution to study detector response
- Obtain event rates for event topology study
- Measurement-simulation agreement of event topology fractions informs trigger detector performance (detector response) → answers precise requirement of muEDM

• Prelim analysis focus on muon data set:

Detector charge distribution

TB24 simulation setup

Measured event rates

Validating measurement

- Optical photon distribution compared between measurement and simulation
- Comparison informs optical photon number cut to be applied in analysis of simulation output

Truth level energy deposition

Measured charge distribution

Validating measurement

- Measurement-simulation agreement at > 97% for anti-coincidence events
- Confirms reproducibility of detector response in simulation
- Residual discrepancies due to simplified optical interfaces

Fast electronics performance

6.4

6.2

5.8

5.6

5.4

5.2

Š

sitron

run129,µ⁺,CV un131,µ⁺,CW

un134,µ⁺,CM

run136,μ⁺,CCW run138,μ⁺,CCW

- Propagation delay of trigger detector, t_{pd}
 - Define t_{pd} as time interval of SiPM signals and LVTTL
 - ✓ t_{pd} ~5.92 ± 0.48 ns, meets fast requirement of $t_{delay} \le 15$ ns
- Trigger efficiency
 - Anti-coincidence efficiency ~ acceptance rate
 - Coincidence efficiency ~ rejection rate
 - ✓ Both rates at \ge 99%

arXiv: 2502.11186

submitted to IEEE TNS

Muon CCW Muon CCW Trigger efficiency run95,e⁺, CCW run116,e⁺, CCW run121,µ,⁺, CCW

0.95

0.94

Propagation Delay for the gate electronics

Mean = 5.920 ± 0.482

SCV

5

Trigger efficiency of the electronic at the anti-coincidence condition

,μ⁺,CW

127,μ⁺,CW

Summary

- A muon trigger detector is developed for the muEDM experiment
- The muon trigger detector produces a signal to trigger the pulse kicker for muon storage
- Simulation design
 - \checkmark Aperture geometry obtained from acceptance map study
 - $\checkmark \epsilon_{acc} \approx 99\%, \epsilon_{rej} \approx 90\%$
- TrigDet prototype tested at test beam 2024 at PSI π E1 beamline
 - ✓ Measurement-simulation agreement at > 97%
 - ✓ Fast electronics with t_{pd} < 15 ns and trigger efficiencies ≥ 99%
 - ✓ Demonstrates design scheme fulfilling muEDM requirements

Established a development scheme for future iterations

Beam test performance of a prototype muon trigger detector for the PSI muEDM experiment, arXiv.2501.01546 (accepted at RDTM)

Development of fast front-end electronics for the Muon Trigger Detector in the PSI muEDM Experiment, <u>arXiv.2502.11186</u> (under review at IEEE TNS)

Bayesian optimization of beam injection and storage in the PSI muEDM Experiment, arXiv.2503.01607 (in preparation)