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Muon g-2 and EDM

Anomalous magnetic moment (a , g-2)

® Deviation of “g-factor” from the prediction of the Dirac equation for fermions.
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» A new experiment to measure muon g-2 and EDM at J-PARC 4, x 10— 11659000



Measurement Principle

® |n uniform B-field, muon spin rotates ahead of momentum due to g-2 # 0. m‘_’me”t“m
_ . _ Polarized u = spin
® Anomalous precession : Spin precession vector w.r.t momentum s
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Experimental Approaches

® In uniform B-field, muon spin rotates ahead of momentum due to g-2 # 0. momentum
M spin
® Anomalous precession : Spin precession vector w.r.t momentum )’_)
B= @, + @ 0 ?
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o w
g-2 term(wg) EDM term (w,)

BNL ES821 & FNAL E989
* Magic momentum
y =29.3 (p=3.1GeV/c)

e Weak electric focusing.

J-PARC E34

* No electric field

e Very weak magnetic focusing

® = —m—”[ B+"(ﬁxB)]

w=—mi[aﬂﬁ+g(ﬁx§’+§)] p = 300 MeV/c
g - Different systematic uncertainty.

- Clear separation of w, and w,,.



Reaccelerated thermal muon beam

proton ™
O ® O Conventional muon beam
. O O (Emittance ~ 1000t mm * mrad)
O O O ® Strong focusing with electric field
: O ® Muon loss
pion deca O ;
. Y ® Pion background
production
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® Reaccelerated thermal muon beam

» Gradient B-field for beam focusing Reaccelerated thermal muon beam

_ (Emittance ~ 1m mm * mrad)
® Free from magic momentum of 3.094 GeV/c

> Free from any of the above
» Lower momentum beam of 300 MeV/c
— Compact storage ring with excellent uniformity (A~0.1 ppm)

— Full tracking detector for decay positron
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7
J-PARC muon g-2/EDM Experiment

Muon Beam Line J-PARC MLF H-line

S

and experimental area

Thermal muon @Surta@;p*
Muon linac
Injection

Storage

©@ @ ® © O

Detector

(B®Storage
® Construction of facility has

Initial goal Final goal
been started in 2022.

g-2 ~ 0.46 ppm - 0.1 ppm
EDM~ 10%'e * cm

® Aiming for data taking
from 2030.




@ Muon Beam Line and Experimental Area
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@ Muon Beam Line and Experimental Area

® Experimental building for H-line will be newly constructed.

® Design work is underway to reduce

the construction costs of the building.

H-line experimental building
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2 Thermal Muon Production

® Surface muon stopped at a target and muonium emitted.

® A muonium is ionized by laser and thermal muon beam is produced.

surface muon thermal muon accelerated muon
E 3.4 MeV 30 meV 212 MeV
o 27 MeV/c 2.3 keV/c 300 MeV/e
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H-line Mu production Electrodes(Soa) LINAC
target
lonization Laser AI:;T/p ~ 3keV/300MeV
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Muonium production target : Laser ablated silica aerogel
® X10 more muonium emission rate compared to flat silica aerogel.
Laser-resonant ionization methods

® Two scheme under consideration.

— 1S-2P excitation by 122 nm(Lyman-a) laser
or 1S-2S excitation by 244 nm laser

Silica aerogel with
laser-ablated
surface
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(2 Demonstration of Thermal Muon Production

® Demonstration of thermal muon production was started at S2 area (Feb. 2023~).

® Thermal muons have been successfully observed

with real muon source chamber (Mar. 2024).

Mlcro'channel e ' Muon source
~p|ate(I\/ICP) J ‘ chamber

Inside

35E-
30E- s s ;
> 25§_ Penetrate pt: USM
g fg{ (degraded) : signals
5E- : IL‘ 5
; n n 1 n.nnn n.nl—in o1 0 1 nn i IJ-Iu
3000 3500 4000

3000
Time of flight [ns]



3 Muon Acceleration

® Thermal muons are reaccelerated up to p=300 MeV/c by muon LINAC.

— Fast acceleration to avoid muon decay loss, No emittance growth.

® Different types of acceleration cavity to realize fast re-acceleration through wide B region.

thermal muons Dy IH-DTL DAW-CCL DLS

io ency Quadrupole) (Interdigital H-mode drift tube linac) (Disk and Washer CCL) (Disk Loaded TW structure)
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(3 Demonstration of Muon Acceleration

® Acceleration of thermal muon to 90 keV was demonstrated using prototype RFQ in Apr. 2024.

® Paper are accepted for the publication in PRL (arxiv:2410.11367).
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Press Release

World's first cooling and acceleration of muon
- The first muon accelerator finally coming to a reality. -

1. : Executive summary ::::

1.9 mmm RF:Q Off E Question
r | | | + If muons can be accelerated in an accelerator, it is expected to be useful in a variety of fields such as elementary particle physics, material and
[ - La:SE r ?f f-resonance i life sciences, and earth science. For example, such muons are useful for ultra-precise measurement of anomallous magnetic moment (g-2) and
0.8 _— | | RFQ on " Laser resonance ; electric dipole moment (EDM) to study new theory beyond the standard model of elementary particles. But accelerating them is technically difficult.
L i L Findings
0.6 [ i E « Generally, muons created in an accelerator have large variations in direction and speed, making them unsuitable for acceleration. However, if a
r ! ! muon has a positive charge, it can be decelerated until it almost stops, and the direction and speed can be made uniform (cooled). For the first
: E il time in the world, the research group succeeded in accelerating a positive muon to approximately 4% of the speed of light.
0.4— i Meaning
: il « The research group demonstrated cooling and acceleration of positive muon for the first time after continuous development of cooling and
r E acceleration technologies in the past. This is a major step towards enabling ultra-precise survey of physics beyond the standard model. In
0.2 L i addition, this technology offers wide range of applications such as muon microscopy and other interdisciplinary research areas.
L |
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(3 Demonstration of Muon Cooling and Acceleration

® Transverse phase-space distribution of the beam was measured by “Q-scan”.

— Strength of quadrupole field (=focal length) v.s. beam spot sizes

® Normalized emittance was reduced with more than two order.
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® Acceleration up to 4 MeV at H2 area is in planned for 2027.



@) 3D-Spiral Beam Injection

*bea«\
® Forinjection of muon beam into compact storage ring, / e
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® Demonstration of the 3D-spiral injection scheme
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(5 Muon Storage Magnet

® A compact MRI-type superconducting solenoid magnet is used to store a muon beam.

- B=3T,dp=66cm

® High uniformity of the magnetic field is achieved by shimming.

® Local uniformity of 1 ppm was demonstrated

with the magnet used in the MuSEUM experiment.
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(6) Positron Detector

. - : Event display with'25 muons
® Positron tracks are measured by Silicon-strip detector. ==y

— Positrons with a momentum of 100-300 MeV/c

— High hit rate capability (6 tracks/ns)
and stability over early to late rate changes (1.4 MHz - 10 kHz)

— Design optimized for pulsed beam.
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(6) Positron Detector

® Major components are in or completed the mass-productions.
® Prototype module “quarter-vane” is assembled.

® V\arious operation test are also performed using the prototype module.

Rigid printed circuit boards Flexible printed circuit boards Silicon-strip sensor
® Prototypes were fabricated and being tested. ® Made by Fujikura Ltd. ® Made by Hamamatsu Photonics K.K., $13804
® Mass-production : done @ Strip pitch : 190 um

I \ ® Mass-production : ongoing

......

pECCETTECery Soorrrecribil- Readout ASIC (SIiT)

' G ® Silterra 180-nm CMOS process
® Binary output with sampling interval of 5 ns
® Mass-production and QA : done

7

Quarter vane module




(6) Positron Detector

® Major components are in or completed the mass-productions.
® Prototype module “quarter-vane” is assembled.

® Various operation test are also performed using the prototype module.

Operation test Operation test Cooling test (in preparation)
in static magnetic field in kicker magnetic field



Expected Sensitivities

® Overall efficiency : 1.3X107

® Assuming 2.2X107 sec (~255 days) of data taking,

total number of reconstructed e*is 5.7 X101,

Transmision only

Simulation B Transmission + decay loss
1 1 I 1 I
| | | l
_ I i | I
3 0.75 - - - A
a I i ] I
> | | | [
c | | | l
2 05 I I I I
= | | | [
2 | | | l
e} | | | |
3 0.25 i i I i
= I I I |
Ix10 i I I
0 | | | [

;) I | Ch-..

1523138 2Prn0l5¢8¢< ¢ s

9 T 3 0o 2 xrxQ oG g 3 a9

S § EE§g8 Tz 2X3F 8o

EE 55387 = £ g3

w |-E|_§

» 2-year running will reach the BNL precision of a .

Prog. Theor. Exp. Phys. 2019, 053C02

Expected uncertainties

T s

Oa
o 450 <70

[ppb]
6 EDM 1.5 0.36

[1021e - cm]

Anomalous spin precession (w,) Magnetic field (w,)

Source Estimation (ppb) Source Estimation (ppb)
Timing shift < 36 Absolute calibration 25

Pitch effect 13 Calibration of mapping probe 20

Electric field 10 Position of mapping probe 45

Delayed positrons 0.8 Field decay < 10

Diffential decay 1.5 Eddy current from kicker 0.1

Quadratic sum < 40 Quadratic sum 56

» Systematic uncertainties will be much smaller than the statistical ones.



Schedule and Milestones

JFY | 2024 2025 2026 2027 2028 2029 2030 Updated, April 2, 2025
KEK
Budget
Surface Beam at H?
muon Q0
e . -
Bld.g' and Design refinement complete * Completion ——
facility T
e et
Muon % lonization test a Ope.ratl.on at. .‘(‘B
source N design intensity -
LINAC V' 100keV acceleration@52 4.3 MeV@ o
03MeV@H2 *x 4 SViZiD 210 Mev  [EERES
Injection and v Completion of * speciﬁcatons identified transport line ready Q0
storage electron injection test muon injection _E
—— ——— -
Storage . = Install .O
magnet 3 ] ' Shimming done g
: duction * =
Detector D Installation E
DAQ and * small DAQ syster O
. Ready Q
computing * common computing re:
Analysis VBO effects * : : nts
Track based align ] Analysis softwate ready




J-PARC Muon g-2/EDM Collaboration

Tamaki Yoshioka
(Kyushu)

Collaboration board (CB)
Chair: T. Yoshioka

Executive board (EB)
Spokesperson: T. Mibe

2024.3 Shanghai Jiao Tong University
2024.6 lwate University
2025.3 University of Liverpool

140 members from Canada,

I+1il b=l B

China, Czech, France, India,
Japan, Korea, Netherlands,

Y g
\\. Yy

L

Russia, USA, UK

Subgroups

Interface coordinators Committees

®
—(
NN L7

o

- Speakers committee
ey é chair: K.Ishida, v, sato

; ' _ Surface muon beam
§ ; i leader: T. Yamazaki, N. Kawamura
| | 1

' [Publication committee
K.Ishida | | chair: B. Shwartz

Ultra-slow muon
~ leader: K. Ishida

LINAC
\ leader: M. Otani I

B ;Injection and storage

B Working groups

Domestic institutes -

Z 1IN\

Kyushu, Nagoya, Tohoku, Niigata, Toyama
C, Tokyo, Ibaraki, RIKEN, JAEA, Iwate, etc.

KEK: IPNS, IMSS, ACC, CRY, MEC, CRC

-
\@" physics analysis
T.Yamanaka, S. Ogawa

leader: H. Iinumal

iH. linuma

____Storage magnet, field measurements
1 leader: K. Sasaki

N |

___Detector

~|T. Kume

| leader: T. Yoshio%@

IY‘ Sato

, DAQ and computing
leader: Y. Sato
: |

\a . Analysis
y leader: T. Yamanaka

‘T. Suehara J ’T. Yar]nanaka |

The 29t collaboration

L

meeting at J-PARC, Dec. 11-13, 2024



Summary

® J-PARC muon g-2/EDM experiment aims to measure muon g-2 and EDM
with a method different from BNL/FNAL experiment.

— Re-accelerated thermal muon beam with no strong focusing.

— Compact MRI-type storage ring with a good injection efficiency
and high uniformity of local B-field.

— Full-tracking detector with large acceptance

® The experiment is getting ready for realization.
— World’s first muon cooling and acceleration was successfully demonstrated.

— First beam to H2 was delivered and acceleration up to 4 MeV is in planned for 2027

® Expecting data taking from FY2030.

— Intending to reach the BNL precision in ~2 year running.
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