International Workshop on Muon Physics at the Intensity and Precision Frontiers (MIP 2025)

Probing Axion-Like Particles with Muons Across High and Low Energies

Lorenzo Calibbi

Hunan University, Changsha, May 18th 2025

Dark Matter exists! (About 27% of the energy of the universe)

DM direct detection searches and LHC searches for heavy new physics are giving increasingly tight constraints on WIMP models

This is why people increasingly focus *also* on other paradigms, *e.g.* axions, dark photons, light DM/light dark sectors etc.

Example: axion-like-particles (ALPs) (*often flavour-violating*) from a broad class of models with spontaneously broken global U(1)

ALPs at muon experiments

Pseudo Nambu-Goldstone bosons: naturally *light* & *weakly* interacting Many scenarios motivated by outstanding problems of the SM:

Puzzle	Broken global U(1) symmetry	PNGB
• Neutrino masses \rightarrow	Lepton Number	Majoron
• Strong CP problem \rightarrow	Peccei-Quinn	Axion
• Flavour problem \rightarrow	Flavour symmetry (Froggatt-Nielsen)	Familon

Interesting interplay with cosmology/astrophysics:

• ALPs can be DM candidates or serve as portals to a light dark sector:

$$\mathcal{L}_{a\chi\chi} = \frac{\partial_{\mu}a}{2f_a} C^A_{\chi\chi} \, \bar{\chi} \gamma^{\mu} \gamma_5 \chi \quad \checkmark \quad \text{dark fermion}$$

• Bounds from star cooling/supernovae (if light and feeble enough)

General interactions to leptons (dimension 5 operators): Shift symmetry (PNGB!) \rightarrow mass arises m_a from (small) explicit U(1) breaking

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left(C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right)$$

-U(1)-breaking scale \rightarrow coupling suppression

In general, these coupling are *lepton flavour violating* (LFV)

- That's natural if lepton U(1) charges are flavour non-universal
- Alternatively, flavour-violating couplings can be loop-induced (for several explicit models see <u>LC Redigolo Ziegler Zupan '20</u>)

This generic Lagrangian induces 2-body LFV decays such as:

$$\Gamma(\ell_i \to \ell_j a) = \frac{1}{16\pi} \frac{m_{\ell_i}^2}{F_{ij}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$

ALPs at muon experiments

Summary of searches for light *invisible* LFV ALPs

- Decays mediated by dimension-5 operators: much larger NP scales can be reached than with $\mu \rightarrow e \gamma$, $\mu \rightarrow eee$ etc. (from dim-6 operators)
- Mu/tau/astro interplay: if $m_a > m_u$ constraints mainly come from τ decays

If $m_a > m_\mu$, constraints on LFV ALPs are much weaker

We have two possible strategies to test the μ -*e* interaction:

Indirect tests through processes they induce: e.g. *muonium-antimuonium oscillations*

Direct production in muon beam collisions

 \rightarrow also see talks by Li Qiang and Gao Le-Yuan

Low-energy test: muonium-antimuonium oscillations

Lorenzo Calibbi (Nankai)

ALPs at muon experiments

High-energy option: the μ TRISTAN proposal

- The idea is to cool and focus μ^+ beams, a technology developed at JPARC [Abe et al., 1901.03047] \rightarrow talks by S. Kamioka and Y. Sato
- The μ^+ beams could be accelerated up to 1 TeV and made to collide with :

30 GeV e^- beam

- ightarrow "Higgs factory" with $\sqrt{s} \simeq 346~{
 m GeV}$
- ightarrow Expected integrated luminosity $\mathcal{L}=1$ ab $^{-1}$

OR

1 TeV μ^+ beam

- \rightarrow "Discovery machine" with $\sqrt{s} = 2$ TeV
- $\rightarrow\,$ Expected integrated luminosity $\mathcal{L}=100~\text{fb}^{-1}$

slide borrowed from L. Mukherjee

High-energy option: the μ TRISTAN proposal

ALPs at muon experiments

ALP production and decay at μ TRISTAN

However, asymmetric beams reduce signal efficiency:

About 70% (50%) of ALP decay products fly outside the geometric acceptance for a detector with $|\eta| < 2.5$ (3.5)

Future sensitivity to ALP μ -*e* interactions

Interesting **interplay** between MACE and μ TRISTAN

What if there are also substantial *flavour-conserving* (LFC) couplings? One can also search for $a \to \mu^+ \mu^-$ but low-energy LFV becomes stronger Other interactions (LFC ones, in particular) lead to muon LFV decays:

Lorenzo Calibbi (Nankai)

ALPs at muon experiments

Future sensitivity to ALP μ -*e* interactions

 μ TRISTAN sensitivity could go beyond low-energy LFV constraints, only for very heavy ALPs, $m_a \ge O(100)$ GeV

Summary

A wide class of new physics models entails axions/ALPs with flavour-violating couplings to SM leptons

Past (upcoming) searches for muon decays into invisible ALPs can test new physics scales up to $10^9 (10^{10})$ GeV

Currently, ALPs heavier than muons are subject to much weaker constraints

Complementary tests on ALP μ -*e* interactions can be performed by MACE ($m_a \leq 5$ GeV) and μ TRISTAN ($m_a \geq 5$ GeV)

If flavour-conserving interactions are also sizeable, LFV muon decay set important constraints unless, $m_a \ge 100$ GeV

Thanks!

Questions?

Additional slides

Signal: monochromatic positron with

ALPs at muon experiments

Currently strongest limit on $\mu \rightarrow e a$

ALPs at muon experiments

ALPs at muon experiments

Lorenzo Calibbi (Nankai)

Cross sections too suppressed!

ALP production processes at μ TRISTAN

Process	ALP couplings	m_a (GeV)	Cross section (fb)
$e^-\mu^+ \to a\gamma$	$C^A_{e\mu} = C^V_{e\mu}$	1	3.0×10^{-2}
		10	3.0×10^{-2}
		100	$3.3 imes 10^{-2}$
$e^-\mu^+ o aZ$	$C^A_{e\mu} = C^V_{e\mu}$	1	5.9×10^{-2}
		10	4.8×10^{-2}
		100	3.1×10^{-2}
$e^-\mu^+ o \mu^-\mu^+ a$		1	1.4×10^{-3}
	$C^A_{e\mu} = C^V_{e\mu}$	10	1.1×10^{-3}
		100	7.2×10^{-4}
$e^-\mu^+ \rightarrow e^-e^+a$		1	8.0×10^{-3}
	$C^A_{e\mu} = C^V_{e\mu}$	10	4.2×10^{-3}
		100	9.8×10^{-4}
$e^-\mu^+ o e^-\tau^+ a$		1	1.4
	$C^A_{\mu\tau} = C^V_{\mu\tau}$	10	0.93
		100	8.6×10^{-2}
$e^-\mu^+ \to \tau^-\mu^+ a$	$C^A_{e\tau} = C^V_{e\tau}$	1	$3.3 imes 10^{-2}$
		10	$1.7 imes 10^{-2}$
		100	2.3×10^{-3}
$\mu^+\mu^+ \to \mu^+ e^+ a$		1	$8.7 imes 10^{-4}$
	$C^A_{e\mu} = C^V_{e\mu}$	10	5.1×10^{-4}
		100	$1.8 imes 10^{-4}$
$\mu^+\mu^+ \to \mu^+\tau^+ a$		1	0.23
	$C^A_{\mu\tau} = C^V_{\mu\tau}$	10	0.14
	· ·	100	0.05

ALPs at muon experiments

Event analysis

- Signal and background events are generated using MADGRAPH, PYTHIA, and MADSPIN.
- Detector response is simulated using DELPHES.
- Resulting events are analysed using ROOT.
- We apply the default basic generator-level cuts on the final-state photons or charged leptons in MADGRAPH.
- Statistical significance is defined as

$$\mathcal{S} = \frac{N_{\mathrm{S}}}{\sqrt{N_{\mathrm{S}} + N_{\mathrm{B}}}}, \quad N_{\mathrm{S(B)}} = \sigma_{\mathrm{S(B)}} \times \varepsilon_{\mathrm{S(B)}} \times \mathcal{L},$$

• Signal efficiency :
$$\varepsilon_{S} \equiv \varepsilon_{sel} \times \varepsilon_{cut}$$

selection efficiency signal acceptance after cuts.

Includes geometric acceptance of detector and particle id probabilities

• Finally, we show the expected 95% CL exclusion potential of $\mu TRISTAN$.

Lopamudra Mukherjee, Nankai University

ALPs at muon experiments

Figure 3: Geometric efficiency of electrons and muons from ALP decays as a function of the ALP mass, for two different designs of the detector: $|\eta|_{\text{max}} = 2.5$ (solid lines) and $|\eta|_{\text{max}} = 3.5$ (dashed lines).

LC Li Mukherjee Yang '24

Muon and electron g-2 constraints

ALPs at muon experiments