

Cosmic ray muon scattering imaging system based on scintillation detector

MIP 2025

Zheng LIANG, Zebo TANG, Cheng LI University of Science and Technology of China

Muon scattering tomography (MST) * A * & * * *

Detection system for MST

Nuclear reactor & waste container
Nuclear weapons
...

- Cosmic ray muon as probe:
 - High penetration
 - No extra radiation

• Proposed at 2003 for:

- Muography: muon absorption
- Muon scattering tomography
 - Measuring scattering angle

• SNM controlling (border security)

• Faster & more accurate (compared to muography)

Track detectors for MST

- Muon tracker
 - Gas detector: MRPC, drift chamber, MPGD, etc.
 - Scintillation detector: scint fiber / scint strips
- Challenges:
 - $\,\circ\,$ Large detection area (~ 1 m^2)
 - High angular resolution (~3 mrad)
 - Cost-effective, robustness

CRIPT MST system (scint.) IEEE, NSS/MIC 2012, 738-742 (2012)

Project	Date	Туре	Area (m ²)	pitch (mm)	σ_x (mm)	$\sigma_x/{ m p}$
LANL-LMT	2008	Drift Tube	3.65 × 3.65	50	0.4	0.008
AWE	2008	RPC	0.5 imes 0.5	1.5	0.5	0.33
FIT	2011	GEM	0.3 × 0.3	0.4	0.13	0.33
INFN Muon Steel	2012	Drift Chamber	3.0×2.4	50	0.2	0.004
THU	2012	MRPC	0.7×0.7	~ 2.5	~0.5	~ 0.2
USTC	2022	Micromegas	0.15×0.15	0.412	0.085	0.21
Glasgow University	2013	Scint Fiber	0.25 × 0.25	2	0.6	0.30
DRDC CRIPT	2011	Triangle scint strips	2 × 2	16.5	3.5	0.21
INFN Muon Portal	2012	Square scint strips	$1 \times 1 \times 18$	10	3.2	0.32
LZU	2022	Triangle scint strips	0.48×0.48	15	2.5	0.17

Design of scintillation detector

- Plastic scintillator
 - Effective area: 53 cm × 60 cm, 1.1 cm pitch
 - Triangular strip: centroid-locating, higher resolution
 - Dual-fiber embedded: coincidence to suppress dark count

• WLS fiber

- Improve uniformity \rightarrow expand to larger detection area
- ESR specular reflecting end: $N_{p.e.} \uparrow 50\%$
- Higher resolution & detection efficiency

• SiPM

- Placed in the same side
- Connected to readout electronic board

Simulation-based optimization

Optimization for fiber offset & depth (left) and fiber radius (right)

Fiber encoding

L0

0

13

10

6

R0

R1

R2

R3

 $\mathbf{L}1$

4

7

14

Encoding table

L2

8

5

2

11

L3

12

9

15

3

• Encode module:

- 32 fibers from neighboring 16 strips
- Combine 4 fibers from different strips
- Reduce readout channel: $32 \rightarrow 8$
- Fiber encoding:
 - Label SiPM & fibers as L,R group
 - 16 fibers & 4 SiPMs in each group
 - 4 fibers \rightarrow 1 SiPM
 - Coincidence of L & R SiPMs

Signal readout

- SiPM mounting board:
 - Support 4 encoding modules, 32 SiPMs
 - 4 temperature sensors
- Readout electronic board:
 - SiPM bias supply & signal readout
 - Charge & time measurement
 - Adjustable coincidence logic
 - Connection to PC

Detector fabrication and assembling to the University of Science and Technology of China

• Quality control: scintillator strip, fiber, SiPM

- 3 encode readout module, 48 strips, 96 fibers, 24 SiPMs
- 1 readout electronic board
- 53 cm × 53 cm detection area

2025/5/18 International Workshop on Muon Physics at the Intensity and Precision Frontiers (MIP2025)

Track reconstruction

- Centroid-locating: $\eta = \frac{Q_1 Q_2}{Q_1 + Q_2}$, $x_p = x_1 + \frac{1 \eta}{2}(x_2 x_1)$
- Incident angle correction: $x_c = x_p + \frac{h}{2} \cdot \eta \cdot \tan \theta_x$
- Simulation results: $\sigma_x = 0.9 \text{ mm} @ \text{pitch} = 10 \text{ mm}$

Spatial resolution

- High uniformity across strips
- Residual distribution: $\sigma_{\Delta x} = 1.22 \sigma_x = 1.2 \text{ mm}$
- Spatial resolution: $\sigma_x = 1.0 \text{ mm } @ \text{ pitch} = 11 \text{ mm}$
- Higher light yield, precise correction

Image reconstruction by PoCA

Organic liquid scintillator

- Reduce fabrication costs
- Liquid scintillation detector
 - Easy to shape
 - Higher light yield
 - Sealing & chemical compatibility
- Prototype detector:
 - Detection area: 8 cm × 16 cm
 - Light yield: 70 % to plastic scintillator
 - Spatial resolution: 1.5 mm (preliminary)

Large area prototype

- Sensitive area: 17.6 cm×60 cm
- One-piece molding partition
- ESR specular reflection inside

Assembling process

Summary

- Muon scattering tomography system based on plastic scintillation detector
 - Large area: 53 cm × 53 cm, high spatial resolution: $\sigma_x = 1$ mm @ 11mm pitch, low cost
 - High light yield: $\overline{N} \approx 92$ p.e., uniformity across channels: $\frac{\sigma_{\overline{N}}}{\overline{N}} \approx 7.3\%$
 - WLS fiber: extend detection area, improve light yield
 - Fiber encoding readout: reduce electronic channel consumption
 - Precise track reconstruction: triangular cross-section & multiple corrections
- Verification of liquid scintillator implementation feasibility in MST system
 - Extend detection area & reduce fabrication budget

Muon scattering tomography (MST) (MST) (MST)

2025/5/18

International Workshop on Muon Physics aluthred international Physics aluthred international Workshop on Muon Physics aluthred international Physics aluthre

and Pracision Frontiers (MID2025)

16

Detector module test

Layout of test system & trigger logic of the system

- A module has been tested under cosmic ray
 - 16 strips, with 16 cm \times 55 cm sensitive area
 - Pitch 11 mm
- 2 prototype detectors:
 - Trigger & track measurement

2025/5/18

• Purposes:

- Verify encoding design
- Verify ESR reflection film
- Measure rough spatial resolution

International Workshop on Muon Physics at the Intensity

Test results

Position residue with different fired SiPM counts

- Decode & calculate position separately successfully
- Photon collection efficiency increase 40% with ESR film
- Measure overall spatial resolution:
 - pitch p = 11mm
 - $\sigma_x = 2.0 \text{ mm} (0.18 \text{ pitch})$

International Workshop on Muon Physics at the Intensity

Decoding test

20

• Decoding:

A0

A1

A2

A3

A0

A1

A2

A3

- Unreliable via direct decoding
- Pick 1 strip with maximum signal and decode •
- Judge whether neighbor strips show signal •

International Workshop on Muon Physics at the Intensity and Precision Frontiers (MIP2025) 2025/5/18

20