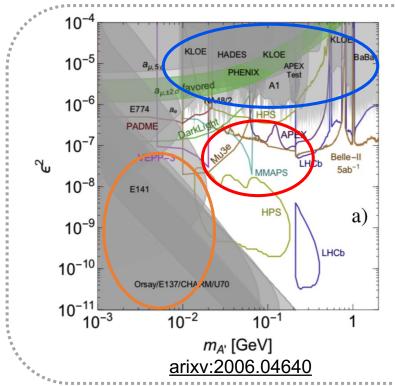


Search for Dark Photons via Visible Decays at Fixed-Target Experiments

Introduction

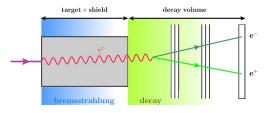

Two model parameters:

- Coupling constant *e*
- Dark photon mass $m_{A'}$

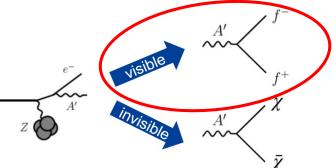
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \frac{\epsilon}{\cos \theta_W} F^{Y,\mu\nu} F^{\prime}_{\mu\nu} + \frac{1}{4} F^{\prime,\mu\nu} F^{\prime}_{\mu\nu} + \frac{m^2_{A'} A^{\prime^2}}{m^2_{A'}}$$

• Light dark matter search: dark photon

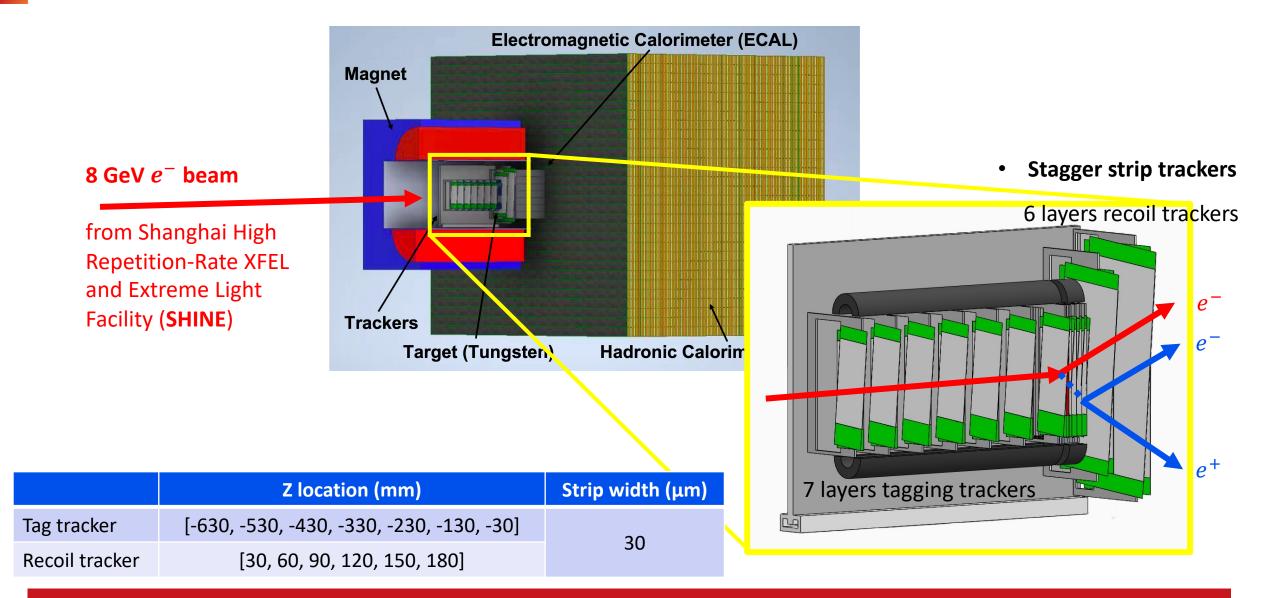
According to the decay channel of dark photon, we have invisible and visible decay.



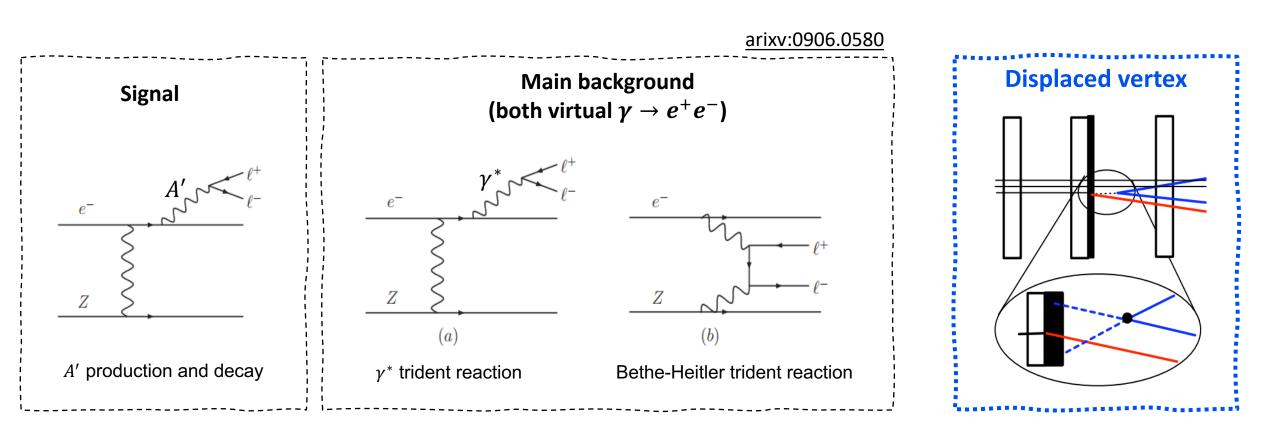
Bump hunting : High production rate


Challenging region :

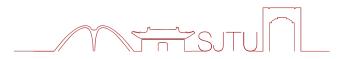
- Signal rate too low for bump hunting
- Lifetime too short for beam-dump experiment
- -> Displaced vertex reconstruction needed!



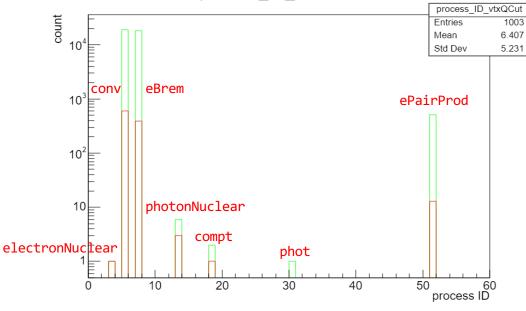
We will focus on visible decay



DarkSHINE Experiment at SHINE Facility



Signal and Background

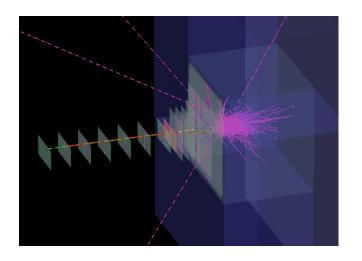


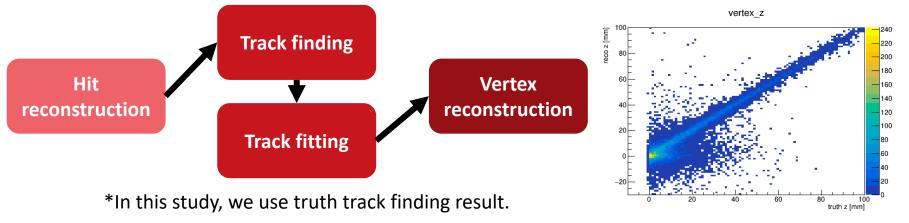
• The main signature to differentiate signal from background is the displaced vertex.

Signal and Background Separation

- Through full simulation, two major background types can be identified:
 - Bremsstrahlung + gamma conversion and electron pair production.
 - The kinematics distributions of these two processes are similar.
- To effectively exclude backgrounds, high-resolution vertex reconstruction is necessary.

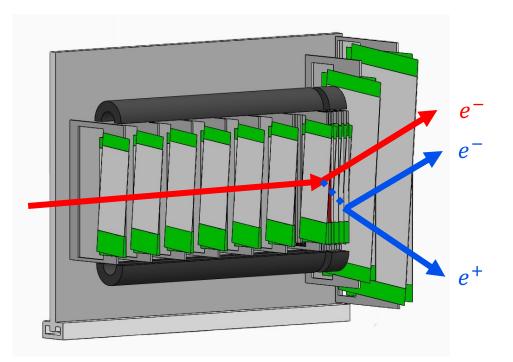
process_ID_vtxNumCut

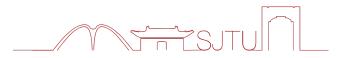

 $0.1 X_0$ W target 3×10^{14} Electron-On-Target

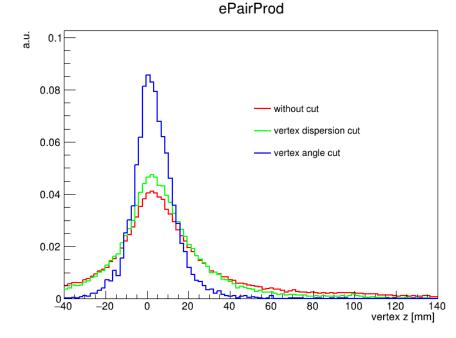

Event type	eBrem + conv	ePairProd		
Production rate	2.5%	0.06%		

* For each 10^4 EOT, there will be ~250 eBrem + conv events and ~6 ePairProd events, the background rate is pretty high!

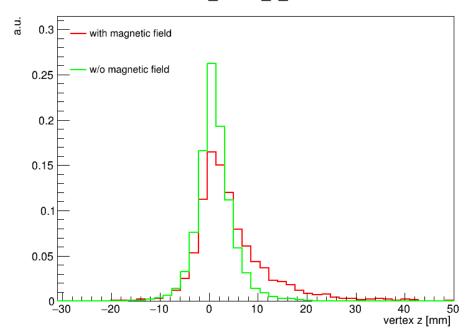
Simulation


- Full simulation study: tracking and vertex reconstruction are needed to accurately estimate the vertexing resolution and background level in visible decay searching.
- We conduct <u>full Geant4 simulation</u>, CalcHEP generator for signal production.
- We apply <u>full chain reconstruction</u> from hits to tracks and to vertexes. We adopt Kalman Filter algorithm for both tracking (GenFit) and vertexing (Rave).





- We develop several methods to increase the vertexing resolution:
 - Use primary beam to reconstruct primary vertex on target, remove recoil electron track by its proximity to the primary vertex.



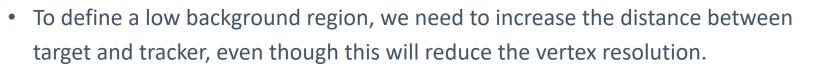
- We develop several methods to increase the vertexing resolution:
 - Use primary beam to reconstruct primary vertex on target, remove recoil electron track by its proximity to the primary vertex.
 - Define variables for vertex quality:
 - Vertex dispersion: tracks distance at the vertex z plane
 - Vertex theta: the angle between two tracks
 - Shared hit num: number of shared hits in the tracks

- Electron pair production background. Truth vertex at target.
- By adding vertex quality cut, the long tail of reconstructed vertex distribution is reduced.

- We develop several methods to increase the vertexing resolution:
 - Use primary beam to reconstruct primary vertex on target, remove recoil electron track by its proximity to the primary vertex.
 - Define variables for vertex quality:
 - Vertex dispersion: tracks distance at the vertex z plane
 - Vertex theta: the angle between two tracks
 - Shared hit num: number of shared hits in the tracks
 - To reduce the long tail at vertex z:
 - Turning off the magnetic field, vertex resolution is improved by a factor of 2 (from 8 mm to 4 mm).

• By turning off the magnetic field, the vertex resolution is improved by a factor of 2 (from 8 mm to 4 mm), and the tail is reduced.

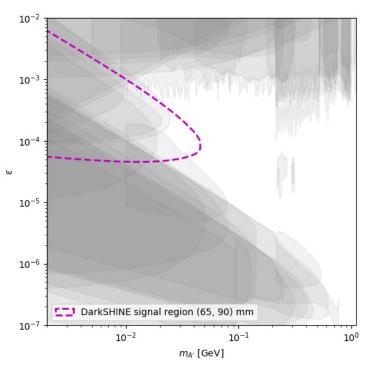
RecTrk2_vertex_z_vtxSHCut



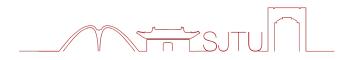

- We develop several methods to increase the vertexing resolution:
 - Use primary beam to reconstruct primary vertex on target, remove recoil electron track by its proximity to the primary vertex.
 - Define variables for vertex quality:
 - Vertex dispersion: tracks distance at the vertex z plane
 - Vertex theta: the angle between two tracks
 - Shared hit num: number of shared hits in the tracks
 - To reduce the long tail at vertex z:
 - Turning off the magnetic field, vertex resolution is improved by a factor of 2 (from 8 mm to 4 mm).
 - Many large reconstructed vertex z is due to scattering at tracker, we add collinearity cut on track to exclude such cases.
 (vertex resolution improved from 4 mm to 3 mm).

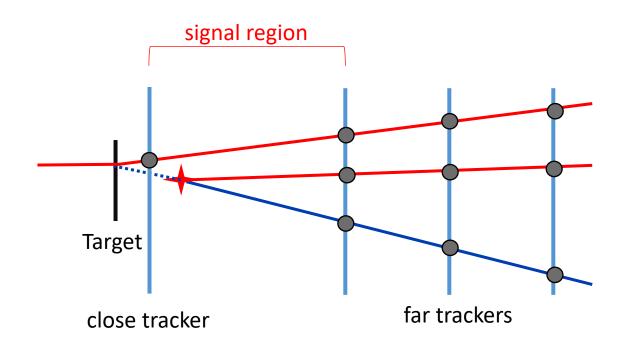
		vertex: (17.62, 19 theta: 0.0361 dispersion: 0.01	0.27, 92.28)						
2	21 -	track 0 vtx id: 0 chi2: 24.14 collinearity: 7.40e-03	track 1 vtx id: 0 chi2: 13.45 collinearity: 3	.09e-03					
x (mm)	20 -	p: (0.003, 0.005, 0.162) hits: (17.76, 19.51, 100.33) (18.29, 20.45, 130.33)	p: (-0.004, 0.00) hits: (17.60, 19.27 (17.55, 19.29 (17.49, 19.31 (17.41, 19.33 (17.33, 19.36 (17.27, 19.39	1, 2.142) 7, 100.33) 9, 130.33) 1, 160.33) 3, 190.33) 5, 220.33)					
	19 -					•	•		
			•	•					
	18 -	•:	•	•		•			
		100 12	0 140	160	180 mm)	200	220	240	,

Signal Region Definition



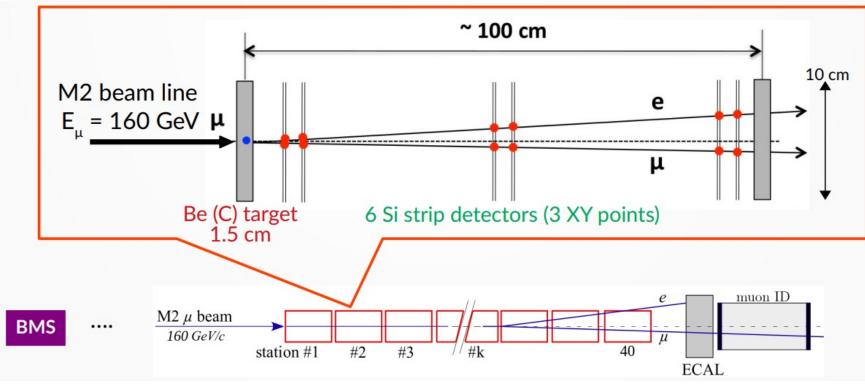
- The distance between target and first tracker changes from 30 mm to 100 mm.
- After several cuts, the vertex resolution can reach around 6.5 mm. Assuming gaussian distribution, take 10σ region as low background region, we take (65, 90) mm.




- By selecting a **displaced vertex** to achieve a low background region
 - Background: 100 out of 3E14 EOT
- 90% C.L. signal limit can be defined

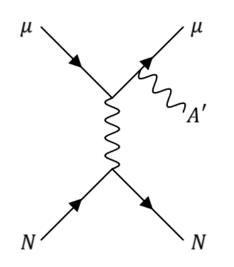
Possible Improvement

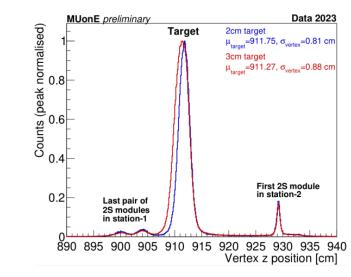
- Add an extra layer of close tracker:
 - It can improve the vertex resolution in background case since it is closer to the vertex.
 - It can also be used for background veto, we can select events with single hit at close tracker.
 - Signal region is defined at between the close tracker and far trackers


	Background (ePairProd)		
total	1000000		
Single hit at close tracker	7200		
Vertex angle < 0.02 rad	10		

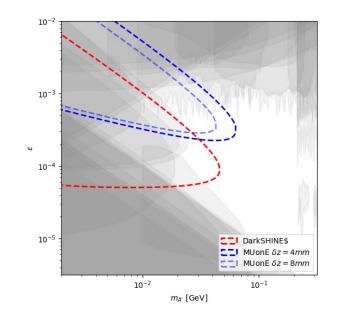
- After single hit cut and vertex angle cut, the ePairProd at target background can be greatly suppressed.
- The main background becomes electron pair production at the close tracker. Consider change the close tracker to drift chamber to reduce multiple scattering.
- Further study is ongoing.

MUonE Experiment

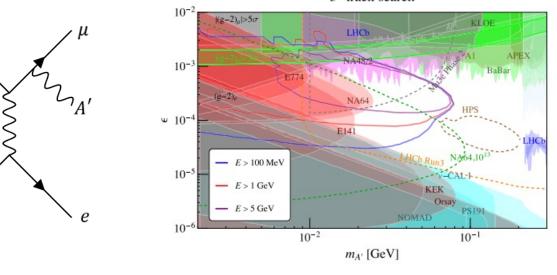

■ MUonE experiment is designed to measure the differential cross section of the elastic scattering process µ[±]e⁻ → µ[±]e⁻. Given the high angular resolution of tracking system, it is also suitable for searching the dark photon at visible decay channel.



^{*}Plot taken from 1st Europe-China-Japan Workshop on Muon Physics

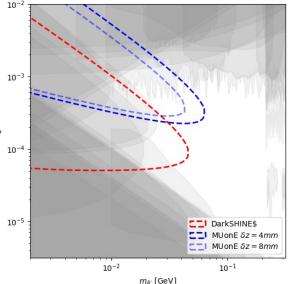

Comparison of DarkSHINE and MUonE

- Dark photon production via muon bremsstrahlung in μ N scattering process:
 - DarkSHINE uses tungsten target and MUonE uses beryllium target, DarkSHINE has a higher production rate.
 - MUonE has 20 times higher beam energy than DarkSHINE, more sensitive to short lifetime signals.
 - Complementarity between DarkSHINE and MUonE.
- Requiring > 10σ (vertex resolution) to achieve low background region
 - Assuming signal efficiency ~ 60%
 - Sensitivity increases if vertex resolution improves from 8 mm to 4 mm




Visible Decay Search at MUonE

- MUonE can also search for dark photon production in μe scattering process.
 - There has been a phenomenology study of visible decay search at MUonE in 2023.
 - However, the analysis is somewhat simplified using fast simulation with strong assumptions.
 - E.g. vertexing resolution has been assumed to be 1mm.
 - More realistic checks with full reconstruction of displaced vertex is needed.
- What can we do at MUonE?
 - Full analysis of visible decay search based on **full simulation and data**.
 - Improve vertexing resolution based on the experience at DarkSHINE.
 - MUonE has the potential for search for other muon-philic BSM particles.



3-track search

PHYS. REV. D 107, 095003 (2023)

- Fixed-target experiments such as DarkSHINE and MUonE have the potential for search of the dark photon visible decay.
- In the preliminary study at DarkSHINE, full simulation based on Geant4 and vertex reconstruction algorithm based on Rave have been established.
 - Several methods to improve vertex resolution have been explored.
 - A low-background region is achieved, and the signal sensitivity reaches unexplored parameter space at $m_{A'} = 40 \text{ MeV}, \epsilon = 10^{-4}$.
 - New detector setup to further extend signal region is under evaluation.
- The methodology of visible decay search can be easily applied to MUonE.
 - Optimizing vertexing algorithm based on the geometry and beam of MUonE.
 - Ability to search for muon-philic BSM physics.

