

The Inflation Trilogy and Primordial Black Holes

He-Xu Zhang (UCAS)

Nov. 2rd, 2024

Based on arXiv: 2410.10996 (Paulo B. Ferraz, João G. Rosa)

School of Nuclear Science and Technology, UCAS

Overview of cosmological inflation

Motivation

The Model

Primordial Black Holes

Conclusion

Overview of Cosmological Inflation

Why Inflation?

- Flatness problem ullet
- Horizon problem •

Origin of primordial density fluctuation •

(Primordial) density fluctuations are: small

....

- scale-invariant
- Gaussian

Temperature fluctuations²[μ K²]

 $H^2\!pprox\!rac{V}{3M_{
m pl}^2}$

EOM: $\ddot{\chi} + 3H\dot{\phi} + V'(\phi) = 0$

Slow-roll conditions:

$$\pi_{\!_V}\!=\!rac{{M_{\,\mathrm{pl}}^{\,2}}}{2}{\left(\!rac{V'}{V}\!
ight)^{\,2}}\!\ll\!1\,,\quad \eta_{\scriptscriptstyle V}\!=\!M_{\,\mathrm{pl}}^{\,2}rac{V''}{V}\!\ll\!1\,
ight|$$

• In cold inflation, interactions of the inflaton with other fields are considered negligible:

 $\dot{
ho}_r + \overline{4 H
ho_r} = 0 \Rightarrow
ho_r \sim 1/a^4 \Rightarrow \text{Universe supercools}$

"Radiation density redshifts away"

• Quantum fluctuations:

• Primordial curvature power spectrum:

$$\Delta_{\mathcal{R}}^{2}(k) = rac{k^{3}}{2\pi^{2}} P_{\mathcal{R}}(k) = A_{s}(k_{\star}) \left(rac{k}{k_{\star}}
ight)^{n_{s}-1}, \quad A_{s}(k_{\star}) \simeq 10^{-9}, n_{s} \simeq 0.968$$

nearly scale-invariant
slightly red-tilted spectrum

2

• Shortcoming: eta-problem

Successful inflation requires that the inflaton mass is smaller than the Hubble scale

$$\eta \,{=}\, rac{m_{\phi}^2}{3H^2} \,{\sim}\, \mathcal{O}\left(0\,.\,01
ight)$$

Integrating out the massive particles yields

$$\Delta V = c_1 V(\phi) \frac{\phi^2}{\Lambda^2},$$

$$\Rightarrow \Delta \eta_V \!=\! rac{{M}_{
m pl}^2}{V} (\Delta V)^{\prime\prime} \!pprox\! 2 c_1 \!\left(\!rac{M_{
m pl}}{\Lambda}\!
ight)^2 \!>\! 1 \; .$$

2

A sample of hybrid inflation

 ϕ : inflaton σ : waterfall field

Warm Inflation

T > H

Inflation + continuous radiation production

 Interactions of the inflaton with other d.o.f. are important during inflation, (generate dissipation terms) small fraction of vacuum energy density can be converted to radiation

$$\ddot{\not{\varphi}} + (3H + \Upsilon)\dot{\phi} + V'(\phi) = 0$$
$$\dot{\not{\varphi}}_{r} + 4H\rho_{r} = \Upsilon \dot{\phi}^{2}$$
$$\rho_{r} = \frac{\pi^{2}}{30}g_{\star}T^{4}$$

ወ

$$egin{aligned} \epsilon_{\scriptscriptstyle H} = & - rac{\dot{H}}{H^2} \simeq rac{1+Q}{2M_{
m pl}^2} rac{\dot{\phi}^2}{H^2} \simeq rac{\epsilon_{\scriptscriptstyle V}}{1+Q} < 1 \Rightarrow \epsilon_{\scriptscriptstyle V} < 1+Q \ \eta_{\scriptscriptstyle H} = & rac{\dot{\epsilon}_{\scriptscriptstyle H}}{H\epsilon_{\scriptscriptstyle H}} < 1 \Rightarrow \eta_{\scriptscriptstyle V} < 1+Q \end{aligned}$$

Warm Inflation

- Eta-problem can be alleviated in warm inflation due to the additional dissipative friction.
- Primordial density fluctuations are sourced by thermal fluctuations:

 $\delta\phi \sim H + \sqrt{HT} + \sqrt{\Upsilon T}$

• Strong dissipative effects lead to a blue-tilted primordial spectrum

• Occurs after reheating. • Dilute the unwanted cosmological relics.

 ϕ

Motivation

• Requiring a single field to drive the full 50-60 e-folds of inflationary

expansion may be too much to ask for in a theory

- Avoid eta-problem
- Explain all of the dark matter by PBHs

Motivation

Inflationary Trilogy

• Inflationary trilogy: undergoes three distinct stages of inflation – cold, warm

and thermal - driven by three different scalar fields

- Cold inflation contributes most of the e-folds
- Warm inflation avoids eta-problem and produces PBHs
- Thermal inflation dilutes the unwanted relics

Inflationary Trilogy

Fig. Evolution of the energy density of the relevant scalar fields and radiation fluid

The Model - Cold inflation

• The tree-level scalar potential in a SUSY hybrid inflation model is given by

 $|V_0 = 2\kappa^2 \overline{|\phi_c|^2 |\sigma|^2 + \kappa^2 (|\sigma|^2 - M_c^2)^2}.$

 ϕ_c : singlet chiral superfield – cold inflaton $\sigma, \overline{\sigma}$: a pair of conjugate superfields – waterfall field

• After taking radiative corrections into account, and at 1-loop order these are given by

$$V(\sigma, \phi) = \frac{1}{4\lambda} (M^2 - \lambda \sigma^2)^2 + \frac{m^2}{2} \phi^2 + \frac{g^2}{2} \phi^2 \sigma^2$$

$$\begin{split} \Delta V_1 &\simeq \frac{(\kappa M_c)^4}{8\pi^2} \mathcal{N} f[x] \,, \, x = \frac{|\phi_c|}{M_c} \,, \\ f[x] &= \frac{1}{4} \left((x^4 + 1) \log \frac{x^4 - 1}{x^4} + 2x^2 \log \frac{x^2 + 1}{x^2 - 1} + 2 \log \frac{\kappa^2 M_c^2 x^2}{Q^2} - 3 \right) \end{split}$$

The Model - Cold inflation

• The evolution of the cold, warm and waterfall scalar fields

$$\ddot{\phi}_i+3H\dot{\phi}_i+rac{\partial V}{\partial \phi_i}=0 \;, \quad H^2=rac{\sum\limits_irac{1}{2}\phi_i^2+V(\phi_c,\phi_w,\sigma)}{3M_{
m pl}^2}$$

arphi c, 0

$$egin{aligned} A_s(k_\star) &\simeq 2.1 imes 10^{-9}, & n_s(k_\star) \simeq 0.965, & k_\star \simeq 0.005\,\mathrm{Mpc^{-1}} \ & \swarrow \ & n_s \simeq 1 - rac{1}{N_c} \Rightarrow N_c \simeq 28 \ & \mathrm{Parameters\ setting:} \ & M_c = 6.6 imes 10^{15}\,\mathrm{GeV}, \,\lambda = 7 imes 10^{-16}, \,\kappa = 1, \,\mathcal{N} = 1 \ & \mathrm{Initial\ conditions\ for\ the\ fields:} \ & \phi_{-s} = 266M, \ & \phi_{-s} \simeq 27M \end{aligned}$$

• Warm Little Inflaton: [Phys.Rev.Lett. 117 (2016) 15, 151301]

The warm inflaton ϕ_w is the resultant singlet scalar field from the collective spontaneous breaking of a U(1) gauge symmetry:

$$egin{aligned} \Phi_1 = rac{M_w}{\sqrt{2}} e^{i(lpha + \phi_w)/M_w}, & \Phi_2 = rac{M_w}{\sqrt{2}} e^{i(lpha - \phi_w)/M_w} & \langle \Phi_1
angle = \langle \Phi_2
angle = M_w/\sqrt{2}\,, & M_w ext{ is the symmetry breaking scale.} \end{aligned}$$

• Consider interactions between the warm inflaton and other d.o.f. consistent with the gauge symmetry, we may build the interaction Lagrangian:

$$egin{aligned} &-\mathcal{L}_{\phi\psi} = rac{g}{\sqrt{2}} \left(\Phi_1 + \Phi_2
ight) \overline{\psi}_{1L} \psi_{1R} - i rac{g}{\sqrt{2}} \left(\Phi_1 - \Phi_2
ight) \overline{\psi}_{2L} \psi_{2R} \ &= g M_w \cos \left(\phi_w / M_w
ight) \overline{\psi}_{1L} \psi_{1R} + g M_w \sin \left(\phi_w / M_w
ight) \overline{\psi}_{2L} \psi_{2R} \end{aligned}$$

• Warm inflation dynamics:

$$\dot{
ho}_{R} + 4 H
ho_{R} = \Upsilon \, \dot{\phi}_{w}^{2} \, , \ \ddot{\phi}_{w} + (3H + \Upsilon) \, \dot{\phi}_{w} + V'(\phi_{w}) = 0 \, , \
ho_{R} = rac{\pi^{2}}{30} g_{\star} T^{4} \, , \quad H^{2} = rac{
ho_{w} +
ho_{R}}{3M_{
m rl}^{2}} \, .$$

$$Q \equiv rac{\Upsilon}{3H}$$

ow-roll approx.

$$\epsilon_w < 1 + Q$$
 $4H\rho_R \simeq \Upsilon \dot{\phi}_w^2$,
 $(3H + \Upsilon) \dot{\phi}_w + V'(\phi_w) = 0$.

with

$$V_w(\phi_w) = \lambda \phi_w^4 \,, \;\; \Upsilon \simeq C_T T \,, \;\;\; C_T = rac{g^2}{h^2} rac{3}{1 - 0.34 {
m loh} h}$$

Slo

• After reheating, radiation is initially diluted as $\rho_R \sim a^{-4}$ until the dissipative source term becomes comparable. When $Q \gg 1$, we can see form $\varepsilon_w < 1 + Q$ that the radiation smoothly takes over as the dominant component:

$$rac{
ho_R}{
ho_w}\simeq rac{\epsilon_w}{2}rac{Q}{(1+Q)^{\,2}}\simeq rac{\epsilon_H}{2}rac{Q}{1+Q}$$

• Dynamics of the second stage of warm inflation:

Parameters setting: $M_w = 5.36 \times 10^{12} \text{GeV}, g \simeq 0.13, h \simeq 0.21 \ (C_T \simeq 0.77), g_{\star} \simeq 12.5$

$$N_w\,{=}\,22\,,N_1\,{=}\,3$$

• The dimensionless curvature power spectrum is:

$$\Delta_{\mathcal{R}}^2 = rac{V_w \left(1+Q
ight)^2}{24 \pi^2 M_{
m pl}^4 \epsilon_w} igg(1+2n+rac{2\sqrt{3}\,Q}{\sqrt{3+4\pi Q}}rac{T}{H}igg) G(Q)\,, \ G(Q) \simeq 1+0.0185 Q^{2.315}+0.335 Q^{1.364}\,,$$

- For $Q \sim T/H \gg 1$, the power spectrum is enhanced by nearly a factor Q^4 relative its quantum counterpart.
- In our example we find $\Delta_R^2 \sim 10^{-2}$ on scales crossing the horizon during warm inflation. This offers a natural setting for producing a significant abundance of PBHs that may potentially explain all of the dark matter.

The Model - Thermal inflation

$$V(\phi_t,T)\simeq V_0+rac{1}{2}(lpha^2T^2-m^2)\phi_t^2+\cdots$$

$$T_t \!=\! \left(\! rac{30}{\pi^2 g_\star}\!
ight)^{1/4}\!V_0^{1/4}\,, \quad T_{
m crit}\!\equiv\!m/lpha$$

$$N_t \simeq \log rac{T_t}{T_{
m crit}} = \log rac{V_0^{1/4}}{m} + rac{1}{4} \log \!\left(rac{30}{\pi^2 g_\star}
ight) + \log lpha$$

 $N_t \approx 10$

• Evolution of the Hubble horizon in this inflationary trilogy scenario:

• PBHs are formed by collapse of overdense regions in radiation dominated universe.

The mass of a PBH:

$$\Delta_{\delta}^2 = rac{4(1+w)^2}{(5+3w)^2} \Big(rac{k}{aH}\Big)^4 \Delta_{\mathcal{R}}^2$$

$$igg|_{M_{
m PBH}} = 1.55 imes 10^{24} M_{\odot} \left(rac{\gamma}{0.2}
ight) \left(rac{g_{\star}}{106.75}
ight)^{1/6} (1+z)^{-2} \xi^2 , igg|_{\xi} = igg\{ egin{array}{c} 1, & {
m DM-PBHs} \ e^{N_t}, & {
m mini-PBHs} \end{array}$$

• The present fraction of dark matter in the form of PBHs:

$$igg|_{
m PBH}\!=\!1.68\! imes\!10^8 \!\left(\!rac{\gamma}{0.2}\!
ight)^{1/2} \!\left(\!rac{g_\star}{106.75}\!
ight)^{-1/4} \!\left(\!rac{M_{
m PBH}}{M_\odot}\!
ight)^{-1/2} eta_{
m PBH} \xi^{-3}\,.$$

with

•

$$eta_{ ext{PBH}} = \gamma \int_{\delta_c}^1 P\left(\delta
ight) d\delta \simeq \gamma rac{\sigma}{\sqrt{2\pi} \delta_c} e^{-rac{\delta_c^2}{2\sigma^2}},$$
 $\sigma^2 = rac{8}{81} A_s \left(rac{k_{ ext{PBH}}}{k_w}
ight)^{n_s - 1} \left(\Gamma \left[rac{n_s + 3}{2}, \left(rac{k_w}{k_{ ext{PBH}}}
ight)^2
ight] - \Gamma \left[rac{n_s + 3}{2}, \left(rac{k_t}{k_{ ext{PBH}}}
ight)^2
ight].$

• PBH redictions of the inflation trilogy scenario:

Thanks for your attention!

Backup

$$f_{\rm PBH} = \Omega_{\rm DM, 0}^{-1} \left(\frac{H}{H_0}\right)^2 (1+z)^{-3} \beta_{\rm PBH} \,.$$
$$M_{\rm PBH} = \gamma \frac{4\pi}{3} H^{-3}(t_{\rm PBH}) \rho(t_{\rm PBH}) = 4\pi M_{\rm pl}^2 H^{-1}(t_{\rm PBH}) \qquad \qquad M_{\rm PBH} = \gamma \frac{4\pi M_{\rm pl}^2}{H} \,, \quad H \propto a^{-2} = (1+z)^2$$

Gaussian window function: $W = \exp(-k^2/2k_{\text{PBH}}^2)$

Slow-roll Inflation

$$H^{\,2}\,{pprox}\,rac{V}{3M_{
m pl}^{2}}\,,$$

EOM:

 $\ddot{\phi}+3H\dot{\phi}+V'(\phi)=0$

Slow-roll conditions:

$$\epsilon_{\scriptscriptstyle V} \!=\! rac{{M_{
m pl}^{\,2}}}{2} \!\left(\!rac{V'}{V}\!
ight)^{\,2} \!\ll\! 1\,, \quad \eta_{\scriptscriptstyle V} \!=\! {M_{
m pl}^{\,2}} rac{V''}{V} \!\ll\! 1\,,$$

 In cold inflation, interactions of the inflaton with other fields are considered negligible during inflation:

 $\dot{\rho}_r + 4H \rho_r = 0 \Rightarrow \rho_r \sim 1/a^4 \Rightarrow \text{Universe supercools}$

"Radiation density redshifts away"

Slow-roll Inflation

$$H^{\,2}\,{pprox}\,rac{V}{3M_{
m pl}^{2}}\,,$$

EOM:

 $\ddot{\phi}+3H\dot{\phi}+V'(\phi)=0$

Slow-roll conditions:

$$\epsilon_{\scriptscriptstyle V} \!=\! rac{{M_{
m pl}^{\,2}}}{2} \!\left(\!rac{V'}{V}\!
ight)^{2} \!\ll\! 1\,, \quad \eta_{\scriptscriptstyle V} \!=\! {M_{
m pl}^{\,2}} rac{V''}{V} \!\ll\! 1\,,$$

 In cold inflation, interactions of the inflaton with other fields are considered negligible during inflation:

 $\dot{
ho}_r + 4 H
ho_r = 0 \Rightarrow
ho_r \sim 1/a^4 \Rightarrow \text{Universe supercools during CI}$

"Radiation density redshifts away"

• In cold inflation, interactions of the inflaton with other fields are considered

negligible during inflation:

• Shortcoming: eta-problem

 $\dot{\rho}_r + 4H\rho_r = \Upsilon \dot{\phi}^2$ \Rightarrow The radiation density redshifts away: $\rho_r \sim 1/a^4$ \Rightarrow Universe supercools during inflation

• Curvature perturbations: $\Phi = H\delta\phi/\dot{\phi}$, $\delta\phi({\sf x},t) = \phi({\sf x},t) - \phi(t)$

$$P_R^2 = \frac{k^3}{2\pi^2} \int_{k'} \langle \Phi(k) \Phi(k') \rangle = P_R^2(k_0) \left(\frac{k}{k_0}\right)^{n_s - 1}, \text{ amplitude} = P_R^2(k_0)$$

 \rightarrow nearly scale-invanrint, but slightly red-tilted, \sigma~As~10^-9, no chance to get PBHs

Warm Inflation

Strong dissipative effects lead to a blue-tilted primordial spectrum ullet

φ

$$\frac{\Upsilon}{3H} \equiv Q > 1$$

 $H^2 \simeq rac{V(\phi)}{3M^2}$

$$V(\phi)$$

Inflation + continuous radiation production

 $\ddot{\phi} + (3\overline{H+\Upsilon})\dot{\phi} + V'(\overline{\phi}) = 0$ $\dot{
ho}_r + 4 H
ho_r = \Upsilon \dot{\phi}^2 \quad H^2 = rac{
ho_r + \dot{\phi}^2/2 + V(\phi)}{3M_{
m el}^2}$ $3H(1+Q)\dot{\phi}$ \simeq - V' $4H
ho_r \simeq \Upsilon \dot{\phi}^2 \Rightarrow
ho_r = rac{3}{4}Q \dot{\phi}^2$ $\rho_r = \frac{\pi^2}{30} g_\star T^4$ $\epsilon_{\scriptscriptstyle H} \!=\! - rac{\dot{H}}{H^2} \!\simeq\! rac{1\!+\!Q}{2M_{
m vl}^2} rac{\phi^2}{H^2} \!\simeq\! rac{\epsilon_{\scriptscriptstyle V}}{1\!+\!Q} \!<\! 1 \Rightarrow \epsilon_{\scriptscriptstyle V} \!<\! 1\!+\!Q$ $\eta_{\scriptscriptstyle H} \!=\! rac{\dot{\epsilon}_{\scriptscriptstyle H}}{H\epsilon_{\scriptscriptstyle H}} \!<\! 1 \Rightarrow \eta_{\scriptscriptstyle V} \!<\! 1 \!+\! Q$

Warm Inflation

- Eta-problem can be alleviated in warm inflation due to the additional dissipative friction
- Strong dissipative effects lead to a blue-tilted primordial spectrum
- Requiring a single field to drive the full 50–60 e-folds of inflationary expansion

may be too much

 \rightarrow nearly scale-invanrint, but slightly blue-tilted,

PR gets enhanced by large Q, get chance to get

The power spectrum of curvature perturbation :

 $P_{\xi} \sim 2 \times 10^{-9}$ with nearly scale-invariant [Planck obs.]

• Quantum fluctuations:

 $\delta\phi(\mathbf{x})\sim H$

• Primordial curvature power spectrum:

nearly scale-invariant slightly red-tilted spectrum

$$\begin{split} \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle &= (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k'}) P_{\mathcal{R}}(k), \quad \Delta_{\mathcal{R}}^{2}(k) = \frac{k^{3}}{2\pi^{2}} P_{\mathcal{R}}(k) \,. \\ \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle &= \left(\frac{H}{\dot{\phi}}\right)^{2} \langle \delta \phi_{\mathbf{k}} \delta \phi_{\mathbf{k}'} \rangle \\ \langle \delta \phi_{\mathbf{k}} \delta \phi_{\mathbf{k}'} \rangle &= (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k'}) \frac{2\pi^{2}}{k^{3}} \left(\frac{H}{2\pi}\right)^{2}, \quad \Delta_{\delta\phi}^{2} = \left(\frac{H}{2\pi}\right)^{2} \,. \\ \Delta_{\mathcal{R}}^{2}(k) &= \frac{H_{\star}^{2}}{(2\pi)^{2}} \frac{H_{\star}^{2}}{\dot{\phi}_{\star}^{2}} \,. \end{split}$$

Motivation

• Requiring a single field to drive the full 50-60 e-folds of inflationary

expansion may be too much to ask for in a theory

- Avoid eta-problem
- Explain all of the dark matter

IN NO. OR ADDRESS.