Tracking & PID performance

C.Zhang/11Nov2024

Tracking resolution

- SW release 24.10.0
- Particle gun muons (no FSR effects)
- Remove muons with Ntrk > 1
- Fit distribution of $\frac{\text{Rec}_{p_T} \text{Gen}_{p_T}}{\text{Gen}_{p_T}}$ in a sub-range of 2 sigma with Gaussian
- Globally the performance is fine
- For low pT track there are more than one peaks on the distribution, working on that supervised by Chengdong Fu

Tracking resolution

- For the impact from OTK
 - Configuration used by fast simulation will be updated

TPC dN/dx resolution

Table 3

with/without combination of TOF information at the Z-pole.

	Factor	1.	1.2
dE/dx	ε _K (%) purity _K (%)	95.97 81.56	94.09 78.17
dE/dx & TOF	ε _K (%) purity _K (%)	98.43 97.89	97.41 96.31

PID

- TPC PID workflow in SW
- PID performance using 1. Garfield (TPC settings, drift, diffusion, avalanche included)
- 2. Generate dN/dx LUT for ionisation mean and sigma
- Incident particle gets its 3. dN/dx and error from the LUTs

PID

PID

• Check the input LUT using Garfield software standalone

• Hope to improve TPC dNdx PID algo. supervised by L.Wu, G.Zhao

Backup