PID efficiency study

TPC PID workflow in SW

- Apply optimal cut with maximum efficiency times purity
- Cut optimization method in Reference improves K efficiency a lot (0.11), improves K purity a little (0.01) at (cosθ, p) = (0.3, 12GeV)
- Apply this method to other samples
 - Release version: CEPCSW_tdr24.10.0
 - Samples: single $\pi/K/p$ samples at p((1 10 GeV), 12 GeV) and $\theta((45^\circ, 85^\circ), 72^\circ), (10000, 20000)$ events generated by ParticleGun

X.Ma, C.Zhang

Optimal cut with maximum efficiency times purity

Ideal weighted $\chi_{TPC}(i \rightarrow K)$ distribution

cut optimization

- Cut optimization at $(\cos\theta, p) = (0.3, 12 \text{GeV})$
 - Maximize efficiency times purity for $\chi_{TPC}(i \rightarrow K)$ distribution to select K
 - R is $(dN/dx)_{\text{meas}}$, R_K is $(dN/dx)_{\exp}^K$, σ is $\sigma_{(dN/dx)_{\text{meas}}}$, π : K: p = (10: 3: 1)
 - Maximum point at $-1.7 < \chi_{TPC}(K) < 1.4$, corresponding *K* efficiency is 0.874, *K* purity is 0.775, *K* efficiency improves a lot (+0.11), *K* purity improves a little (+0.01)
 - If we choose the minimum χ^2 to select K, K efficiency is 0.765, K purity is 0.765 2

Comparison of optimal cut results and former results

♦ Optimal cut maximizes efficiency times purity for $\chi_{TPC}(i \rightarrow K)$ distribution to select K

 Former results choose the minimum χ² to select K

Optimal cut results using combined dN/dx and t

Find a better way to combine? We cannot get ideal gaussian distributions

Backup

$$\chi_{\text{TPC}}(i) = \frac{(dN/dx)_{\text{meas}} - (dN/dx)_{\exp}^{i}}{\sigma_{(dN/dx)_{\text{meas}}}}, i = \pi/K/p$$

$$\chi_{\text{TOF}}(i) = \frac{t_{\text{meas}} - t_{\exp}^{i}}{\sigma_{t_{\text{meas}}}}, \sigma_{t_{\text{meas}}} = \sqrt{0.05^{2} + 0.02^{2}}$$

$$\chi^{2}(i) = \chi_{\text{TOF}}^{2}(i) + \chi_{\text{TPC}}^{2}(i)$$

$$\chi(i) = \sqrt{\chi^{2}(i)}$$
Efficiency_{tot}(i) = Efficiency_{trk}(i) \times Efficiency_{\text{PID}}(i)
$$\text{Efficiency}_{\text{trk}}(i) = \frac{N_{i}^{\text{reco}}}{N_{i}^{\text{gen}}}$$

$$\text{Efficiency}_{\text{PID}}(i) = \frac{N_{i}^{\text{reco}}(\chi^{2}(i) < \chi^{2}(j))}{N_{i}^{\text{reco}}}(j \neq i)$$

$$purity(K) = \frac{N_{K \to K}}{N_{K \to K} + N_{\pi \to K} + N_{p \to K}}$$

$$= \frac{3 \times \text{Efficiency}_{K \to K} + 10 \times \text{Efficiency}_{\pi \to K} + 1 \times \text{Efficiency}_{p \to K}}{N_{i}^{\text{reco}}}$$

$$\text{Efficiency}_{\text{opti. PID}}(i) = \frac{N_{i}^{\text{reco}}(a < \chi(i \to i) < b)}{N_{i}^{\text{reco}}}$$

$$purity_{\text{opti.}}(K)$$

Comparison in dN/dx and dE/dx

- Tmax=851
- I=188.0
- delta=0(x<1.7635),

2ln(bg)+0.19714*(4.4855-x)^2.9618-11.9480(1.7635<x<4.4855),

2ln(bg)-11.9480(x>4.4855), x=ln(bg)/ln(10)

10.1016/0092-640X(84)90002-0

PhysRev.88.851

Efficiency and purity

45 degree

85 degree

Combined chi distribution at 12GeV, 72degree

Combined chi distribution at 2GeV, 45degree

