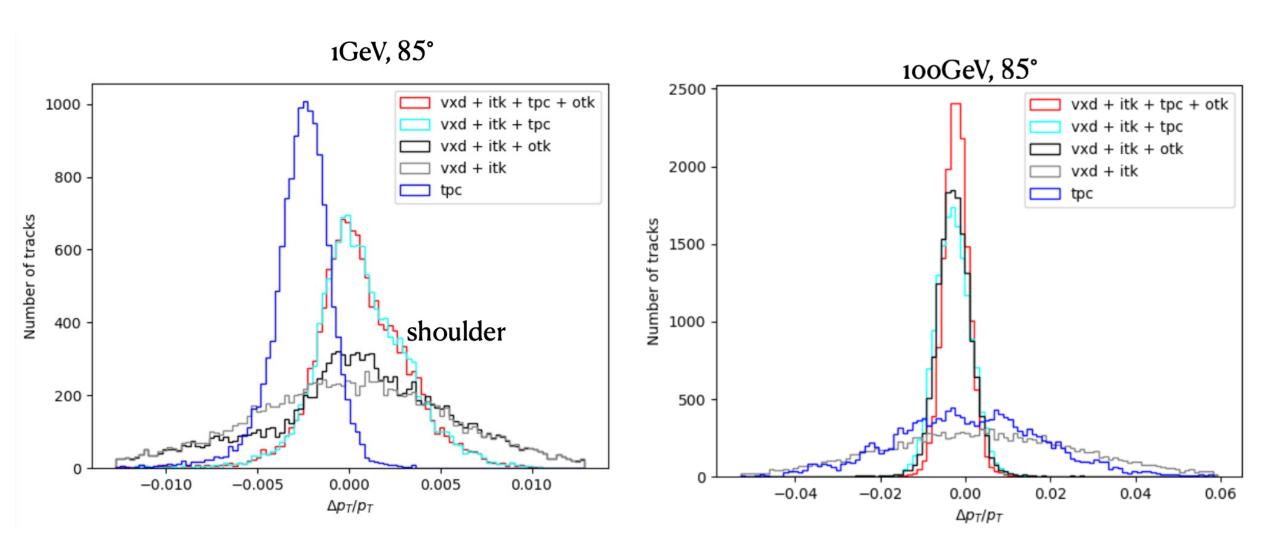

Performance studies

- Two task forces created, regular meetings/discussions with software team
 - Tracking/PID contact: Chenguang ZhangJets/Clusters contact: Kaili Zhang
- Main efforts on objects performance studies in close interaction with software/detector groups



PID performance:

- Comparison with NIMA paper (CDR tpc PID, ideal case) -> differences to be understood
 - Actions/plans discussed with software group
- Jets/clusters
 - Working on differential jet/photon resolution/eff. etc

Backup

Tracking resolution

Comments/Recommendations on Performance

- The planned list of channels looks a bit too high for a few months of work, better to focus on demonstrating that the reference detector reaches adequate performance for physics
 - Select fewer channels, aimed at demonstrating that the reference detector reaches adequate performance for physics. Include some simple topology (e.g. Z→mumu). Encompass H, Z, W and top physics.
 - Foresee in the TDR results and figures about performance on basic objects (leptons, photons, jets) as a function of energy and polar angle
 - A measurement of V_cs during the WW run is probably a more relevant benchmark than V_cb;
 - The channel to be used for the electroweak mixing angle measurement should be clarified

Plans:

Priority: working closely with software team for the development and performance studies of basic objects

	4				
H→ss/cc/sb	←	Process @ c.m.e←	Domain←	Relevant Det. Performance←	↩
H→inv Vcb	Z→μμ←	Z@ 91.2 GeV←	Z←¹	lepton ID, tracking←	←
W fusion Xsec	Η→γγ<	qqH←	Higgs←	photon ID, EM resolution←	~
α_S CKM angle γ –2 β	Higgs recoil←	ℓℓH<	Higgs←	Lepton ID, track dP/P←	←
Weak mixing angle	H→ss←	ννΗ @ 240 GeV ^{<}	Higgs←	PID, Vertexing, PFA + JOI←	←
Higgs recoil H→bb, gg	H→inv←	qqH←	Higgs/NP←	PFA, MET←	\leftarrow
Η→μμ	Vcs/Vcb←	WW→ℓvqq @ 240/160 GeV←	Flavor←	PFA, JOI + PID (lepton, tau)←	\leftarrow
Н→γγ	H→LLP←	ℓℓH<	NP←	TPC, TOF, calo, muon detectors←	-
W mass & width Top mass & width		4			-
Bs→ννφ	H→μμ←	qqH←	Higgs←	lepton ID, tracking, OTK←	-
Bc→τν	Top mass & width←	Threshold scan @ 360 GeV←	EW←	Beam energy←	←
$B_0 \rightarrow 2\pi^0$ $H \rightarrow LLP$	Weak mixing angle←	Z→bb @ 91.2 GeV←	EW←	JOI←	\leftarrow
H→aa→4γ		-		ر	٦.