COFFEE IVCV test

Dexing Miao, Yiming Li, Zhiyu Xiang, Zijun Xu

January 11, 2024

Zhiyu Xiang January 11, 2024 1/57

Chip size

• Area $\sim 4 \times 3 \mathrm{mm}^2$, thickness $\sim 500 \mu \mathrm{m}$

Zhiyu Xiang January 11, 2024 2 / 57

Zhiyu Xiang January 11, 2024

HVCMOS depletion, i.e. TSI 180nm process

- 160V gives $\sim 55 \mu \mathrm{m}$ depletion depth.
- Would not expect fully depleted for COFFEE2.

Zhiyu Xiang January 11, 2024 4 / 57

What changed

- Improved COFFEE2 test procedure than COFFEE1.
- SourceMeter(2470) is programmed to scan automatically, making test faster, more stable and more reliable.
- LCR meter open corrected in the right way. After correction, offset for 10 kHz/100 kHz (1MHz) \sim 1fF (-50fF, acceptable).
- ullet Consider offset, results are consistent for 10kHz \sim 1MHz.

Zhiyu Xiang January 11, 2024 5 / 57

Capacitance: sidewall & bottom?

ullet Ideal PN junction has $rac{1}{C^2} \propto V_R$, $C = C_0/\sqrt{1+rac{V_R}{\phi_0}}$

• Q: do we have sizeable sidewall effect?

$$\begin{split} C = C^{bot} + C^{sw} \propto \frac{C_0^{bot}}{\sqrt{\phi_0^{bot} + V_R}} + \frac{C_0^{sw}}{\sqrt{\phi_0^{sw} + V_R}} \\ \textit{Roughly}, \quad \frac{1}{C^2} \propto p_0 + p_1 \cdot \frac{1}{V_R} + p_2 \cdot V_R \not\propto V_R \end{split}$$

• If correctly, the function obtained by taking any 3 points (i.e 5V, 30V, 60V) should be able to roughly describe the distribution.

Zhiyu Xiang January 11, 2024 6 / 57

Single pixel: L1 & R1 (DNW: L $\sim 12 \mu m, R \sim 22 \mu m$)

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{max}(L1) \sim 210 fF$, $C_{max}(R1) \sim 190 fF$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024

Single pixel: L2 & R2

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{\rm max}(L2) \sim 210 {\rm fF}, \quad C_{\rm max}(R2) \sim 190 {\rm fF}$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024

Single pixel: L3 & R3

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{\rm max}(L3) \sim 210 {\rm fF}, \quad C_{\rm max}(R3) \sim 190 {\rm fF}$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 9 / 57

Single pixel: L4 & R4

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{\rm max}(L4) \sim 220 {\rm fF}, \quad C_{\rm max}(R4) \sim 180 {\rm fF}$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 10 / 57

Single pixel: L5 & R5

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{\rm max}(L5) \sim 220 {\rm fF}, \quad C_{\rm max}(R5) \sim 190 {\rm fF}$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 11 / 57

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{max}(1O) \sim 480 fF$, $C_{max}(1I) \sim 240 fF$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- ullet Before breakdown, $C_{max}(2O) \sim 630 fF, C_{max}(2I) \sim 310 fF$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 13 / 57

- ullet Breakdown voltage > 70V, leakage \sim 10pA
- Before breakdown, $C_{max}(3O) \sim 830 fF$, $C_{max}(3I) \sim 420 fF$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 14 / 57

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{\rm max}(4{\rm O}) \sim 480 {\rm fF}, \quad C_{\rm max}(4{\rm I}) \sim 230 {\rm fF}$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 15 / 57

- ullet Breakdown voltage > 70V, leakage \sim 10pA
- Before breakdown, $C_{max}(5O) \sim 620 fF$, $C_{max}(5I) \sim 350 fF$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 16 / 57

- ullet Breakdown voltage $> 70 \mathrm{V}$, leakage $\sim 10 \mathrm{pA}$
- Before breakdown, $C_{\rm max}(6{\rm O}) \sim 770 {
 m fF}, \quad C_{\rm max}(6{\rm I}) \sim 460 {
 m fF}$
- Roughly, $\frac{1}{C^2} \propto V \text{ for } V \in (30, 70)V$

Zhiyu Xiang January 11, 2024 17 / 57

O/I: Sharing effect

- To avoid adjacent bias, retest C(O)&C(I) under I&O common 0V.
- C(O)/C(I) decreased $\sim 100/60 fF$ (no matter with V_R) after common 0V. Limited sharing effect, up to 15%.

Zhiyu Xiang January 11, 2024

O/I: Slope

- If offset 0, ideal diode in N parallel, for any reverse voltage, $C(N) = N \times C(1)$
- For offset non-0, proportional relationship would be broken for C but still keep true for CV curve slope. Slope doesn't lie:)
 - Comes from pixel gap, DNW or circuit line length?

Zhiyu Xiang January 11, 2024 19 / 57

O/I: Offset

 \bullet Slope implies offset non-0. Assuming offset universally for O&I at any V_R , we should have:

$$\frac{C(O) - Offset}{C(I) - Offset} = 8 \Longrightarrow Offset = \frac{8 \cdot C(I) - C(O)}{7}$$

• Same level in row $(1 \leftrightarrow 4, 2 \leftrightarrow 5, 3 \leftrightarrow 6)$, increasing in colum (pixel gap $20/15/10\mu m$, correlated to the offset value!).

• Improved but lower band (1 \sim 15V) still nonlinear.

Zhiyu Xiang January 11, 2024

• Improved but lower band (1 \sim 15V) still nonlinear.

Zhiyu Xiang January 11, 2024

• Improved but lower band (1 \sim 15V) still nonlinear.

Zhiyu Xiang January 11, 2024

• Improved but lower band (1 \sim 15V) still nonlinear.

Zhiyu Xiang January 11, 2024

• Improved but lower band (1 \sim 15V) still nonlinear.

Zhiyu Xiang January 11, 2024 25 / 57

 \bullet Improved but lower band (1 $\sim 15 \mathrm{V})$ still nonlinear.

Zhiyu Xiang January 11, 2024

Offset 0: L1&R1

• Artificial offset 170fF(150fF) for L(R).

Zhiyu Xiang January 11, 2024

Offset 0: L2&R2

• Artificial offset 170fF(150fF) for L(R) .

Zhiyu Xiang January 11, 2024

Offset 0: L3&R3

• Artificial offset 170fF(150fF) for L(R).

Zhiyu Xiang January 11, 2024

Offset 0: L4&R4

• Artificial offset 170fF(150fF) for L(R).

Zhiyu Xiang January 11, 2024

Offset 0: L5&R5

• Artificial offset 170fF(150fF) for L(R).

Zhiyu Xiang January 11, 2024

After offset 0, C vs.s Area

- Pixel size ratio for S2(5)/S1(4)=1.35, S3(6)/S1(4)=1.75.
- Ideally, after offset 0, $C \propto Area$. Roughly OK for Sector 1/2/3.
- Seems P stop works.

Zhiyu Xiang January 11, 2024 32 / 57

Offset not correlated with route wire

- For COFFEE1, same route wires for Sector 01/02/03/07/09.
- Offset values should not only comes from route wire.

Zhiyu Xiang January 11, 2024 33 / 57

Conclusion

General:

- ullet Promising COFFEE2: Breakdown voltage > 70V, leakage \sim 10pA, and seems all pixels not fully depleted.
- For single pixel in L&R, $C \sim 200 fF$, and $C(L) \sim C(R) \times 110\%$.
- For multi-pixels, $C(O) \sim C(I) \times 200\%$, except for Sector5&6.

Additional:

- \bullet Roughly, $\frac{1}{C^2} \propto p_0 p_1/V_R + p_2 \cdot V_R$, probably sizeable sidewall effect.
- C positively correlated with area. Sharing effect is limited.
- The slope of the CV curve imply parallel's proportional relationship.

Next:

- Test more chips, also would retest COFFEE1 in case of previous open correction may wrong.
- Try test COFFEE2 with laser since obvious light current seen.
 - Special test board design ongoing.

Zhiyu Xiang January 11, 2024 34 / 57

Backup: IVCV - COFFEE2 chip 2, L1

Zhiyu Xiang January 11, 2024 35 / 57

Backup: IVCV - COFFEE2 chip 2, L2

Zhiyu Xiang January 11, 2024 36 / 57

Zhiyu Xiang January 11, 2024 37 / 57

Zhiyu Xiang January 11, 2024 38 / 57

Zhiyu Xiang January 11, 2024 39 / 57

Zhiyu Xiang January 11, 2024 40 / 57

Zhiyu Xiang January 11, 2024 41 / 57

Zhiyu Xiang January 11, 2024 42 / 57

Zhiyu Xiang January 11, 2024 43 / 57

Zhiyu Xiang January 11, 2024 44 / 57

Zhiyu Xiang January 11, 2024 45 / 57

Zhiyu Xiang January 11, 2024 46 / 57

Zhiyu Xiang January 11, 2024 47 / 57

Zhiyu Xiang January 11, 2024 48 / 57

Zhiyu Xiang January 11, 2024 49 / 57

Zhiyu Xiang January 11, 2024 50 / 57

Zhiyu Xiang January 11, 2024 51/57

Zhiyu Xiang January 11, 2024 52 / 57

Zhiyu Xiang January 11, 2024 53 / 57

Zhiyu Xiang January 11, 2024 54 / 57

Zhiyu Xiang January 11, 2024 55 / 57

Zhiyu Xiang January 11, 2024 56 / 57

Backup: test Feq.

100kHz fluctuates more, need redo open correction. Before & After:

Zhiyu Xiang January 11, 2024 57 / 57