COFFEE2 Circuit Test with Caribou Board

Dexing Miao, Leyi Li, Yiming Li, Weiguo Lu, Zhiyu Xiang, Zijun Xu, Yang Zhou

October 15, 2024

Zhiyu Xiang October 15, 2024 1/17

ZC706 evaluation board

Xilinx ZC706 evaluation board

Zyng-7000 XC7Z045-2FFG900C SoC

Processing System (PS)

2 x ARM Cortex-A9 MPCore CPUs Yocto-based Linux Network/ssh control interface Caribou DAQ software (Peary)

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

Programmable Logic (PL)

Kintex-7 FPGA AXI control interface Caribou firmware

Zhiyu Xiang October 15, 2024 2 / 17

CaR board

Control and Readout (CaR) board

Feature	Description			
Adjustable Power Supplies	8 units, 0.8 – 3.6 V, 3 A			
Adjustable Voltage References	32 units, 0 – 4 V			
Adjustable Current References	8 units, 0 – 1 mA			
Voltage Inputs to Slow ADC	8 channels, 50 kSPS, 12-bit, 0 - 4 V			
Analog Inputs to Fast ADC	16 channels, 65 MSPS, 14-bit, 0 - 1 V			
Programmable Injection Pulsers	4 units			
Full-Duplex High-Speed GTx Links	8 links, <12 Gbps			
LVDS Links	17 bidirectional links			
Input/Output Links	10 output links, 14 input links, 0.8 - 3.6 V			
Programmable Clock Generator	Included			
External TLU Clock Reference	Included			
External High-Voltage (HV) Input	Included			
FEAST Module Compatibility	Supported			
FMC Interface to FPGA	Included			
SEARAY Interface to Detector Chip	320-pin connector			

20 CaR boards v1.4 produced and distributed within RD50 common project

https://gitlab.cern.ch/Caribou/hardware/carboard

3 / 17

Zhiyu Xiang October 15, 2024

Caribou system architecture

Zhiyu Xiang October 15, 2024 4 / 17

Setup: Tested Bias PIN

-							
PIN	VDDD	BL	$TH_{L}left$	COM_BIAS	CLAMP	VDDA	
$V_{set}[V]$	1.2	0.55	0.8	8.0	1.2	1.2	
$V_{out}[V]$	1.23	0.55	8.0	8.0	1.2	1.2	
PIN	VB2_FB	VB1_FB	IBN	IBFOLL	$VCAS_rt$	IBP	
$V_{set}[V]$	0	0.475	0.6	0.5	1.5	0.76	
$V_{out}[V]$	0	0.474	0.6	0.5	1.5	0.76	
PIN	VDD_grd	IOUT	VDDA_rt	VB1	TH_rt	VBO	
$V_{set}[V]$	1.2	1.2	0.65	0.7	0.6	1.5	
$V_{out}[V]$	1.23	1.2	0.68	0.7	0.6	1.5	
PIN	BL	VNFOLL	VCAS_lt	VN	VP	VB2_SB	
V _{set} [V]	0.55	0.4	0.72	0.535	0.73	0	
$V_{out}[V]$	0.55	0.4	0.72	0.536	0.73	0	
PIN	P_WELL	VB1_SB	VDDA_left				
$V_{\text{set}}[V]$	0	0.29	0.8				
$V_{out}[V]$	0	0.29	0.844				

Other bias pins default connect to HV, PWR_OUT or GND

Zhiyu Xiang October 15, 2024 5 / 17

Setup: Tested pulse configuration

Pulse rise/fall time about $4\mu s/20ns$. Q: require $\sim ns?$ - 20ns fall time works in simulation.

- INJ_BIAS (voltage) + INJ_CTRL (analog switch) = pulse
- INJ_BIAS: I2C protocol among SoC and CaR, DAQ system integrated, easy to control
- INJ_CTRL: Hardware manager or AXI protocol among FPGA and CaR. Need build firmware, configured by Zijun with former method

Zhiyu Xiang October 15, 2024 6 / 17

Setup: Configurable PIN

BIAS: current source, i/o $5\mu A$ configured

VBG/VDAC: BG output/DAC output. getADC \longrightarrow 0.6V

VOUT_1COL: Analog output $\stackrel{FMC}{\longrightarrow}$ CaR pin(ADC_IN_G2) $\stackrel{ADC}{\longrightarrow}$ Diff. digital signal $\stackrel{FMC}{\longrightarrow}$ ZC706 FPGA pin: [T24 T25]

 $Sel_{row} < 0...4 >: row selector. Digital input, FPGA pin: [W25 W26], [V28 V29], [R28 T28], [T30 U30], [R25 R26]$

Row_sel < 0 >: Digital output for validate Sel_ < 0 >, FPGA pin [N26 N27]

VCAL: external pulse injection. CaR(INJ_CTRL_1), FPGA pin:[T24 T25]

D_out_1stcol, D_out_234cols: Digital output. H-level if pixel triggered in 1 or 234 (in total) colum. FPGA pin: [P23 P24], [P21 R21]

Zhiyu Xiang October 15, 2024 7 / 17

Setup: Problem PIN - FPGA pin NOT connected to FMC

Few pins of FPGA could not connected for ZC706 due to factory design

Col_sel< 19 >: Digital output. H-level if colum 19 selected

A_out_1stcol, A_out_234cols: Analog output for colum0 or colum 123 (in total)

 $Sel_col < 0...4 >: colum selector. Digital input, FPGA pin: [P30 R30], [1 break], [T29 U29], [3 break], [P25 P26]$

COM_ROW: Digital pulse output after buffer for row 32

COM_PIXEL: 1 pixel comparator output after buffer

CSA_OUT_COL: CSA output after buffer for colum 1

CSA_OUT_PIXEL: CSA output after buffer for 1 pixel

VOUT_1COL, VOUT_7COL, VOUT_SP: Analog output for colum 4, 5-11 or outside 4 signal pixels

COL_CON: Test input from external signal

Zhiyu Xiang October 15, 2024

8 / 17

Digital switch test

Switch Sel_row[4,0] to 0 or !0, Row_sel[0] gives 1 or 0, En_row also works

Zhiyu Xiang October 15, 2024 9 / 17

Modifying wire-bonding for colum selector

Row-Colum mask: foalting pin convert to 0/1 or random code?

row bit index	4	3	2	1	0	col bit index	4	3	2	1	0
CaR pin index	1	2	4	5	7	CaR pin index	6	Ø	3	8	0

Modifying the wire-bonding for foalting pin (connect bit 3/1 to neighbor) to ensure the certain 0 or 1 level

• case1: $1 \Leftrightarrow 0$, $3 \Leftrightarrow 2$, enable colum 0,3,12,15,16,19

• case2: $1 \Leftrightarrow 2$, $3 \Leftrightarrow 4$, enable colum 0,1,6,7

Zhiyu Xiang October 15, 2024 10 / 17

Colum selector validation

Switch $Sel_col[4,0]$ to 10011, $Col_sel[19]$ gives 1

Zhiyu Xiang October 15, 2024 11 / 17

CSA analog out test

- i.e. Switch Sel_row[4,0] and Sel_col[4,0] to ALL 0 (pixel 0, other rows also tried)
- The abnormal CSA baseline analog output after buffer (A_out_1st_col) and digital output after discriminator (D_out_1stcol).
 Pulse injection doesn't affect the output
- Similar for other colums (tried 3,6,7 and last 8 colums)

• The discriminator output also not stable

Zhiyu Xiang October 15, 2024

12 / 17

What happen at the very beginning?

• At the time scale of power on. Not sure if there is self-oscillation

Zhiyu Xiang October 15, 2024 13 / 17

Check a CSA baseline for all TBs

2 (modifying wire-bonding) + 3 (from Weiguo) = 5 TBs in total. CSA_OUT_PIXEL, analog output of a single pixel after buffer, independent of the row and column gating.

TB4, TB5, TB6
Adjust reference voltage did not affect to much.

Zhiyu Xiang October 15, 2024 14 / 17

Check CSA in same colum, i.e. TB1

Zhiyu Xiang October 15, 2024 15 / 17

VDAC test

- VDAC controlled by 6 bit input from colum < 19 14 >, should proportion to colum gating. i.e. TB1 allows colum 15,16,19
- Not a perfect linear dependency

Zhiyu Xiang October 15, 2024 16 / 17

Conclusion

- Caribou system prepared, bias voltage and pulse function verified
- 5 chips tested with (modified) designed board
- Not seen expected CSA analog output
- Row-Colum digital gating works well
- Discriminator seems work
- VDAC changed with colum selection
- What can we try:
 - 1. Try FIB to modify the connection among diode and CSA to avoid the X-talk
 - 2. Investigate the CSA analog output with the simulation
 - 3. Re-do the test with the new externally adjustable board to avoid any potential X-talk from CaR system

Zhiyu Xiang October 15, 2024 17 / 17