
Development of DNN trigger for
Belle II experiment

Institute of frontier and interdisciplinary science, Shandong University

Shuangshuang Zhang, Qi-Dong Zhou

12 Dec. 2024

CEPC TDAQ meeting

2024-12.12 2

Outline

l Motivation

l Deep Neural Network (DNN) model

l Development of DNN model with python

l High Level Syntheis (HLS) with Vitis

l Testing IP cores in Vivado

Motivation

Ø Study the CDC DNN trigger and master the implementation process of

DNN in FPGA

Ø Optimize the model and observe changes in performance

Ø PLAN: Investigating the possiblity of using more input variables in DNN

models, such as ADC signals and momentum

Ø PLAN: Development of DNN model to Versal ACAP

32024-12.12

Central drift chamber

Ø A drift cell of the CDC is formed of one sense

wire and eight field wires

Ø A hit on an axial wire provides coordinates in

the transverse plane(2D)(Φ,r)

Ø By combining axial and stereo hits, a three

dimensional track can be reconstructed(3D)

The CDC track trigger
Ø The Belle II trigger consists of two

levels: the first level trigger(hardware)

and the high level trigger(software)

Ø CDC track trigger provides charged track

information

Ø The track finding for the trigger is based

on track segments(“TS”)

Deep Neural Network (DNN) model

• DNN trigger : 2D track candidates+ Drift time

for all other wires in the stereo wire

• Input : α,tdrift , phi of priority wire, tdrift of all

other 10 wires for every TS(3*9+11*4=71)

• Output : z0,θ0,classifier output (Q)

• Extract a track segment from each

super layer

• Every track segment (TS) contains a

set of α,tdrift and Φ

42024-12.12

Development of DNN model with python

• Using pytorch lib for model

building and training

• Add two hidden layers

• Modify learning rates

Initial Development

52024-12.12

Workflow of DNN model development on FPGA

Extract weights
and bias

Train DNN with
pytorch

Import file in
vitis hls

C simulation

C synthesisC/RTL
cosimulation

Generate IP
Using IP Core in

vivado

62024-12.12

Development flow with Vitis HLS
A typical flow using HLS has the following steps:

• Convert python based model to C/C++ model with hls4ml (Optional)

• Write the algorithm using C/C++ with a target architecture in mind

• Verify the functionality at the behavioral level

• Generate the RTL based model

• Verify the functionality of the generated RTL model

Optimizing performance:“#pragma HLS”

• Generate multiple small memories

• Increases the amount of read and write ports for the storage

72024-12.12

Performance

baseline(NN)/software(DNN)/RTL(HLS)
82024-12.12

Virtex UltraScale
XCVU160

Versal
AI Core
XCVC1902

2024-12.12 9

Latency(testbench)

initial:
74clock

optimize:
81clock

2024-12.12 10

Next plan

Ø Investigating the possiblity of using more input variables in DNN models, such

as ADC signals and momentum(Hope to receive more suggestions)

• Check the size of the model scale(Utilization, latency)

• Predicting the use of the next generation UT5 board

• First step: deploy the DNN model into Versal AI engine

• Further plan: deploy the NN model on Versal DPU

Ø Deploy the neutral networks to Versal ACAP

Ø Further optimize the model and perform pruning

Thanks for your listening

Back up

Virtex UltraScale XCVU160

initial optimize

Some questions

