第二届武汉高能物理青年论坛

The review of QCD axion

雷镇宇 (华中科技大学) 2024.11.30

The Peccei Quinn mechanism

PQWW, DFSZ and KSVZ model ☆

Axion effective Lagrangian and mass $\frac{1}{2}$

★ Axion and other open issues of the SM

QCD vacuum structure

The vacuum configurations of gluon is gauge equivalent to $G_{\mu}=0$. In temporal gauge, this means

$$
G_j = ig^{-1}U\partial_j U^{-1}
$$

$$
U = U(\mathbf{x}) \in SU(3)_{c}
$$

 $U(\mathbf{x})$ is a map from \mathbb{R}^3 to $SU(3)_C$. Such maps, and hence the vacuum configurations, can be classified by elements of $\pi_3(SU(3)_c) \cong \mathbb{Z}$.
By a path in a space X we mean a continuous map $f: I \to X$ where I is the unit

These integers are called winding number

interval $[0,1]$. The idea of continuously deforming a path, keeping its endpoints fixed, is made precise by the following definition. A **homotopy** of paths in X is a family $f_t: I \rightarrow X$, $0 \le t \le 1$, such that

- (1) The endpoints $f_t(0) = x_0$ and $f_t(1) = x_1$ are independent of t .
- (2) The associated map $F:I \times I \rightarrow X$ defined by $F(s,t) = f_t(s)$ is continuous.

QCD vacuum structure $\frac{1}{2}$

Weinberg EJ. *Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics*. Cambridge University Press; 2012.

QCD vacuum structure

The winding number can be calculated by a homomorphism

$$
N[U] = \frac{1}{24\pi^2} \epsilon^{ijk} \int d^3x \,\text{tr}\, \underline{U}^{-1} \partial_i U U^{-1} \partial_j U U^{-1} \partial_k U
$$

This homomorphism is related to chiral anomaly $G_iG_jG_k$

$$
\partial_{\mu}J^{\mu}_{A} = \frac{g^2}{16\pi^2}\text{Tr } G_{\mu\nu}\tilde{G}^{\mu\nu}
$$

Tr
$$
G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}\epsilon^{\mu\nu\rho\sigma}
$$
Tr $(G_{\nu}G_{\rho\sigma} + \frac{2ig}{3}G_{\nu}G_{\rho}G_{\sigma})$

QCD vacuum structure

The charge associated with the axial current is $Q_A = \int d^3x J_A^0 = \frac{g^2}{16\pi^2} \int d^3x \epsilon^{ijk} \, \text{tr}\left(G_iG_{jk} + \frac{2ig}{3}G_iG_jG_k\right).$ $G_{jk} = 0$

Now let $G_{\mu}(t, x)$ be a path parameterized by t, interpolate between two vacuum configurations with winding numbers N_1 and N_2

 ΔN is gauge invariant while N is not

$$
\frac{g^2}{16\pi^2}\int d^4x\,{\rm Tr}\, G_{\mu\nu}\tilde G^{\mu\nu} = N_2-N_1\,\sqrt{}
$$

θ -vacua

There exists one quantum vacuum state for each winding number, called nvacua. Large gauge transformation takes one n-vacuum to the next

$$
T|n\rangle = |n+1\rangle
$$

The true vacuum is also a eigenvector of T

$$
|\theta\rangle=\sum_{n=-\infty}^{\infty}e^{-in\theta}|n\rangle \hspace*{1.5cm} T|\theta\rangle=\mathrm{e}^{\mathrm{i}\theta}|\theta\rangle
$$

 θ -vacua

The θ -vacua to θ' -vacua amplitude is

$$
\langle \theta' | \theta \rangle = 2\pi \delta(\theta - \theta') \sum_{k} e^{ik\theta} \langle k | 0 \rangle
$$

$$
\langle k | 0 \rangle = \int [dG] e^{i \int d^4x \mathcal{L}}
$$

The factor of $e^{ik\theta}$ is equivalent to adding to the Lagrangian density a term of

$$
e^{ik\theta} = \exp\left(\frac{i\theta g^2}{16\pi^2} \int d^4x \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}\right)
$$

 θ term

Strong CP problem $\frac{1}{\sqrt{2}}$

The θ term is CP odd

$$
CP: \; \text{Tr}\, G_{\mu\nu}\tilde{G}_{\mu\nu} \to -\, \text{Tr}\, G_{\mu\nu}\tilde{G}_{\mu\nu}
$$

The θ term can be transformed to the phase of the mass term for the quarks by $U(1)_{A}$

$$
U(1)_A : \bar{q}_L M q_R + h.c. \to \bar{q}_L M e^{-2i\alpha} q_R + h.c.
$$

$$
\frac{\theta g^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} \to (\theta + 2N\alpha) \frac{g^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu}
$$

Strong CP problem $\frac{1}{\sqrt{2}}$

Now the CP odd term is the imaginary part of mass term for quark

$$
\mathcal{L}_{\text{CP}} = -\text{i}\bar{\theta} \frac{m_u m_d}{m_u + m_d} (\bar{u}\gamma_5 u + \bar{d}\gamma_5 d) \underbrace{\qquad \qquad }_{\text{$\theta = \theta + \text{arg det } M$}}
$$

This term will generate a CP-violating pion-nucleon interaction

$$
{\cal L}_{\pi NN} = g_{\pi NN}^\theta \bar{N} \tau^a N \pi^a
$$

Strong CP problem $\frac{1}{\sqrt{2}}$

It contributes to neutron's electric dipole moment

David Bailin and Alexander Love. *Introduction to Gauge Field Theory*. Taylor and Francis Groupr, 1993.

Strong CP problem \bigtimes

The experimental data gives $1,2$

 $|\theta| < 10^{-10}$

The strong CP problem: why $\bar{\theta}$ is so small?

1. C. A. Baker *et al.*, *Phys. Rev. Lett.* **97** (2006) 131801 2. J. Engel et al., *Prog. Part. Nucl. Phys.* **71** (2013) 21–74,

Peccei and Quinn's proof \bigtimes

Peccei and Quinn proved that θ is vanished when the Lagrangian possesses a chiral $U(1)$ symmetry.^{1,2}

 $\psi \rightarrow \exp(-i\alpha \gamma_5)\psi$ In single-flavor toy model $\rightarrow \varphi \rightarrow \exp(2{\rm i}\alpha)\varphi$ ${\cal L}=-\frac{1}{4}G_{\mu\nu}^aG^{\mu\nu a}+i\bar{\psi}D_\mu\gamma^\mu\psi+G\bar{\psi}_L\psi_R\varphi+G^*\bar{\psi}_R\psi_L\varphi^* \,.$ $-|\partial_{\mu}\varphi|^2 - \mu^2|\varphi|^2 - h|\varphi|^4; \quad \mu^2 < 0.$

1. Roberto D Peccei and Helen R Quinn, *Phys. Rev. Lett,* 38(25):1440, 1977. 2. Roberto D Peccei and Helen R Quinn, *Phys. Rev. D*, 16(6):1791, 1977.

Peccei and Quinn's proof $\frac{1}{\sqrt{2}}$

The CP violating phase is

$$
\bar{\theta} = \theta + \arg G + \arg \langle \varphi \rangle
$$

The LO of effective potential can be calculated

$$
\rightarrow A = \arg \varphi - \arg \langle \varphi \rangle
$$

$$
V_{\text{eff}} = U(|\varphi|) - K|G\varphi|\cos\left(\bar{\theta} + A\right)^{-1}
$$

It implies that $\bar{\theta} = 0$

The phase of scalar $a = A/|\langle \varphi \rangle|$ is called axion

Vafa-Witten theorem $\frac{1}{2}$

Parity cannot be spontaneously broken in $QCD¹$

$$
E(0) \le E(\lambda) = 1 + \lambda \langle G\tilde{G} \rangle + O(\lambda^2)
$$

$$
E(\bar{\theta} + A) \ge E(\bar{\theta}) \Rightarrow \bar{\theta} = 0
$$

1. C. Vafa, E. Witten, Phys. Rev. Lett. 53 (1984) 535.

PQ quality problem ☆

PQ symmetry may be violated by effective operator by gravitational corrections. For example

$$
g_5 \, \frac{|\Phi|^4 \, (\Phi+\Phi^*)}{M_{\rm Pl}}
$$

These violations result in a non-vanished $\bar{\theta}$

PQWW, DFSZ and KSVZ model

PQWW model

The first realistic axion model is PQWW model¹

$$
-\mathcal{L}_Y = y_{ij}^{(u)} \bar{Q}_i H_u u_{jR} + y_{ij}^{(d)} \bar{Q}_i H_d d_{jR} + h.c.
$$

 H_u is independent with H_d for the independence of $U(1)_{PQ}$ and $U(1)_Y$.

1. Weinberg PhysRevLett.40.223, Wilczek PhysRevLett.40.279, 1978

PQWW, DFSZ and KSVZ model

DFSZ model $\frac{1}{2}$

DFSZ model requires the additional SM-singlet scalar to PQWW model¹ $V(H_u, H_d, \phi) = \tilde{V}_{moduli}(|H_u|, |H_d|, |\phi|, |\phi_u^{\dagger} \tilde{\phi}_d|) + \lambda H_u^{\dagger} \tilde{H}_d \phi^2 + h.c.$

The axion is the combination of three phases

$$
v_a^2 \equiv \mathcal{X}_u^2 v_u^2 + \mathcal{X}_d^2 v_d^2 + \mathcal{X}_\phi^2 v_\phi^2, \quad a = \frac{1}{v_a} (\mathcal{X}_u v_u a_u + \mathcal{X}_d v_d a_d + \mathcal{X}_\phi v_\phi a_\phi)
$$

In the limit $v_{\phi} \gg v_{\mu}$, v_{d} ,

$$
f_a \simeq v_\phi/6, \quad a \simeq a_\phi
$$

1. M. Dine et al., Physics Letters B 104, 199 (1981)

PQWW, DFSZ and KSVZ model

KSVZ model $\frac{1}{2}$

The KSVZ model extends the SM field content with a heavy quark and a SM $singlet¹$

$$
-\mathcal{L}_Y = y_{\mathcal{Q}} \bar{\mathcal{Q}}_L \mathcal{Q}_R \phi + h.c.
$$

The axion is just the phase of ϕ with $f_a = 2v$

1. J. E. Kim, Phys. Rev. Lett. **43**, 103 (1979)

Axion effective Lagrangian \bigtimes

All of the axion model contain the quark-scalar Yukawa term

$$
-\mathcal{L}_Y \supset y_q \bar{q}_L q_R \phi + h.c.
$$

With a local quark $U(1)_A$ rotation

$$
q\to {\rm e}^{-{\rm i}\gamma_5 a/f_a}q
$$

Now the axion is disentangled from the Yukawa term with some additional term

Axion effective Lagrangian $\frac{1}{\sqrt{2}}$

$$
\Delta \mathcal{L} = \frac{g_s^2}{32\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \frac{e^2}{32\pi} \frac{E}{N} \frac{a}{f_a} F^a_{\mu\nu} \tilde{F}^{a\mu\nu} + c^0_q \frac{\partial_\mu a}{2f_a} \bar{q} \gamma^\mu \gamma_5 q
$$

The axion effective Lagrangian (in quark level) reads

$$
\mathcal{L}_a = \frac{1}{2} \left(\partial_\mu a \right)^2 + \frac{a}{f_a} \frac{g_s^2}{32\pi^2} G \tilde{G} + \frac{1}{4} g_{a\gamma}^0 a F \tilde{F} + \frac{\partial_\mu a}{2f_a} \bar{q} c_q^0 \gamma^\mu \gamma_5 q - \bar{q}_L M_q q_R + \text{ h.c.}
$$

Axion effective Lagrangian \bigtimes

The axion can be probed by $g_{a\gamma}$ and g_{af}

Axion effective Lagrangian $\frac{1}{N}$

arXiv:2003.01100v4

Axion effective Lagrangian $\frac{1}{\sqrt{2}}$

 $\rightarrow K^+ \rightarrow \pi^+ + a, \quad J/\psi \rightarrow a + \gamma$

The bound from particle physics experiment is $f_a > 10^4$ GeV

However, for an axion being so light, the stringent bounds emerge from astrophysics and cosmology

 10^9 Gev $\leq f_a \leq 10^{12}$ Gev

Axion mass

The mass of axion comes from the anomaly term, it can be calculated by $CHPT¹$

$$
\mathcal{L}_{\text{eff}} = v^3 \text{Tr}(M\tilde{\Sigma} + M\tilde{\Sigma}^{\dagger}) + K \cos(\sqrt{6}\pi_9 / f_9 + a/f_a)
$$

$$
\tilde{\Sigma} = \exp[i(2\pi_9 / f_9\sqrt{6})I]\Sigma
$$

The physical axion is the mixing among a , π^3 , π^8 , π^9 , with mass

$$
m_A^2 = \frac{K}{f_a^2} \frac{1}{1 + K \text{Tr} M^{-1} / 2v^3}
$$

1. Kiwoon Choi et al., Physics Letters B, 181(1):145-149, 1986.

Axion mass $\frac{1}{2}$

In QCD, $\Lambda_{QCD} \sim 100 \text{Mev} \gg m_u, m_d \sim 1 \text{Mev}$

$$
m_A^2 = \frac{2v^3}{f_a^2 \text{Tr} M^{-1}} = \frac{m_u m_d}{(m_u + m_d)^2} \frac{f_\pi^2 m_\pi^2}{f_a^2}
$$

$$
\sum_{u = 2(m_u + m_d)v^3 = f_\pi^2 m_\pi^2}
$$

This is the well-known formula for the axion mass.

Axion and other open issues

Axions and neutrino masses

The RH neutrino and the PQ symmetry breaking scales naturally fall in the same intermediate range $M_R \sim f_a \sim 10^9$ Gev – 10^{12} Gev

A common origin for mass of RH neutrino and axion decay constant: $N_R N_R \Phi$

Classical article: M. Shin, Phys. Rev. Lett. 59, 2515 (1987)

Composite axion and sterile neutrino: arXiv:2310.08557v1

Flavor violated axion neutrino model: arXiv:2408.05903v1

 $0.0011 \text{eV} \lesssim m_3 \lesssim 0.0029 \text{eV}$

Axion and other open issues

Axions and the baryon asymmetry $\frac{1}{\sqrt{2}}$

Axion carries PQ charge and generates net PQ charge, and these charge can be transformed to net baryon number

Axiogenesis: 10.1103/PhysRevLett.124.111602

Affleck-Dine baryogenesis: arXiv:1906.05286

Axion and other open issues

Axions and inflation $\frac{1}{2}$

The potential of axion is slow, it can play the role as inflaton

Natural Inflation: 10.1103/PhysRevLett.114.151303

SMASH model : arXiv:1610.01639