

# Light hadrons from the $\Lambda_c^+$ decays

#### Xiao-Rui Lyu (吕晓睿) (xiaorui@ucas.ac.cn)

University of Chinese Academy Sciences

## Outline



- Light hadrons from the charmed baryon decays
- Recent experimental progress
- Future dataset
- Summary

## The charmed baryon family



- The ground-state singly charmed baryons mostly degenerate via weak process
- Light hadrons, esp. hyperons, are produced after charm quark weak decays in a charmed baryon
- $\Lambda_c^+$  is the lightest charmed baryon, which has been best studied in the experiments, such as BESIII, LHCb and Belle, in recent ten years
- Most of the charmed baryons will eventually decay to the  $\Lambda_c^+$





## Light hadrons from $\Lambda_c^+$ weak decays



# a heavy quark (*c*) with an unexcited spin-zero diquark (*u-d*)

→ diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark.



 $\rightarrow \underline{Charmed \ baryon} \ (\Lambda_c[udc]) \\ m_u, \ m_d << m_c \rightarrow \underline{diquark} + \underline{quark} \\ (qq) \ (Q)$ 

The Λ<sup>+</sup><sub>c</sub> weak decay acts as isospin filter
 E.g., Oset suggests to study the Λ(1405) through Λc→πΛ(1405) and Λ(1405) e v, which filters isospin I=0 from contamination of the I=1 [Phys. Rev. C 92, 055204 (2015), Phys. Rev. D 93, 014021 (2016)]







## Accessible hyperon states



|                            |                    | Overall  | verall Status as seen in — |             |                                            |                                  |                             |         |                 |              |             |                                                            |
|----------------------------|--------------------|----------|----------------------------|-------------|--------------------------------------------|----------------------------------|-----------------------------|---------|-----------------|--------------|-------------|------------------------------------------------------------|
| Particle                   | $J^P$              | status   | $N\overline{K}$            | $\Sigma\pi$ | Other channels                             |                                  |                             |         |                 |              |             |                                                            |
| $\overline{\Lambda(1116)}$ | $1/2^+$            | ****     |                            |             | $N\pi$ (weak decay)                        |                                  |                             | Overall | Statu           | s as see     | n in —      |                                                            |
| $\Lambda(1380)$            | $1/2^{-}$          | **       | **                         | **          |                                            | Particle                         | $J^P$                       | status  | $N\overline{K}$ | $\Lambda\pi$ | $\Sigma\pi$ | -<br>Other channels                                        |
| $\Lambda(1405)$            | $1/2^{-}$          | ****     | ****                       | ****        |                                            | $\Sigma(1193)$                   | $1/2^{+}$                   | ****    |                 |              |             | $N\pi$ (weak decay)                                        |
| $\Lambda(1520)$            | $3/2^{-}$          | ****     | ****                       | ****        | $\Lambda\pi\pi,\Lambda\gamma,\Sigma\pi\pi$ | $\Sigma(1385)$                   | $3/2^+$                     | ****    |                 | ****         | ****        | $\Lambda\gamma$                                            |
| $\Lambda(1600)$            | $1^{\prime}/2^{+}$ | ****     | ***                        | ****        | $\Lambda\pi\pi$ . $\Sigma(1385)\pi$        | $\Sigma(1580)$                   | $3/2^-$                     | *       | *               | *            | *           |                                                            |
| $\Lambda(1670)$            | $1/2^{-1}$         | ****     | ****                       | ****        | An                                         | $\Sigma(1620)$                   | $1/2^{-}$                   | *       | *               | *            | *           |                                                            |
| A(1600)                    | $\frac{1}{2}$      | ****     | ****                       | ***         | $\Lambda_{\pi\pi} \Sigma(1385)_{\pi}$      | $\Sigma(1660)$                   | $1/2^+$                     | ***     | ***             | ***          | ***         |                                                            |
| A(1710)                    | $\frac{3}{2}$      | <u> </u> | ****                       | ***         | $11 \pi \pi, 21 (1000) \pi$                | $\Sigma(1670)$                   | $3/2^{-}$                   | ****    | ****            | ****         | ****        |                                                            |
| $\Lambda(1710)$            | 1/2                | *        | *                          | *           | A 3-7-7-*                                  | $\Sigma(1750)$                   | 1/2                         | ***     | ***             | **           | ***         | $\Sigma\eta$                                               |
| $\Lambda(1800)$            | $1/2^{-}$          | ***      | ***                        | **          | $\Lambda\pi\pi, NK$                        | $\Sigma(1775)$<br>$\Sigma(1780)$ | $\frac{5}{2}$               | ****    | ****            | ****         | **          |                                                            |
| $\Lambda(1810)$            | $1/2^{+}$          | ***      | **                         | **          | $N\overline{K}^*$                          | $\Sigma(1780)$<br>$\Sigma(1880)$ | $3/2^{+}$                   | *       | *               | *            | *           |                                                            |
| $\Lambda(1820)$            | $5/2^{+}$          | ****     | ****                       | ****        | $\Sigma(1385)\pi$                          | $\Sigma(1880)$<br>$\Sigma(1000)$ | $\frac{1}{2}$               | **      | **              | *            | ala ala     |                                                            |
| $\Lambda(1830)$            | $5/2^{-}$          | ****     | ****                       | ****        | $\Sigma(1385)\pi$                          | $\Sigma(1900)$<br>$\Sigma(1910)$ | $\frac{1}{2}$ $\frac{3}{2}$ | ***     | *               | *            | **          |                                                            |
| $\Lambda(1890)$            | $3/2^+$            | ****     | ****                       | **          | $\Sigma(1385)\pi N\overline{K}^*$          | $\Sigma(1910) \\ \Sigma(1915)$   | $5/2^+$                     | ****    | ***             | ***          | ***         |                                                            |
| A(2000)                    | $\frac{0}{2}$      |          | -le -le -le -le            | -11-        | $2(1000)\pi, 1011$                         | $\Sigma(1940)$                   | $3/2^+$                     | *       | *               |              | *           |                                                            |
| A(2000)                    | $\frac{1}{2}$      | *        | *                          | *           |                                            | $\Sigma(2010)$                   | $3/2^{-}$                   | *       | *               | *            |             |                                                            |
| A(2050)                    | 3/2                | *        | *                          | *           |                                            | $\Sigma(2030)$                   | $7/2^+$                     | ****    | ****            | ****         | **          | $\Delta(1232)\overline{K},N\overline{K}^*,\Sigma(1385)\pi$ |
| $\Lambda(2070)$            | $3/2^{+}$          | *        | *                          | *           |                                            | $\Sigma(2070)$                   | $5/2^{+}$                   | *       | *               |              | *           |                                                            |
| $\Lambda(2080)$            | $5/2^{-}$          | *        | *                          | *           |                                            | $\Sigma(2080)$                   | $3/2^+$                     | *       |                 | *            |             |                                                            |
| $\Lambda(2085)$            | $7/2^{+}$          | **       | **                         | *           |                                            | $\Sigma(2100)$                   | $7/2^{-}$                   | *       | *               | *            | *           |                                                            |
| $\dot{\Lambda(2100)}$      | $\frac{7}{2}$      | ****     | ****                       | **          | $N\overline{K}^*$                          | $\Sigma(2110)$                   | $1/2^{-}$                   | *       | *               | *            | *           |                                                            |
| 1(2100)                    | •/2<br>•/2+        | ተተተ      | ጥጥጥጥ                       | ጥጥ          | 1V1X<br>2V <del>1/</del> *                 | $\Sigma(2230)$                   | $3/2^{+}$                   | *       | *               | *            | *           |                                                            |
| $\Lambda(2110)$            | $5/2^{+}$          | ***      | **                         | **          | NK                                         | $\Sigma(2250)$                   |                             | **      | **              | *            | *           |                                                            |
| $\Lambda(2325)$            | $3/2^{-}$          | *        | *                          |             |                                            | $\Sigma(2455)$                   |                             | *       | *               |              |             |                                                            |
| $\Lambda(2350)$            | $9/2^{+}$          | ***      | ***                        | *           |                                            | $\Sigma(2620)$                   |                             | *       | *               |              |             |                                                            |
| $\Lambda(2585)$            |                    | *        | *                          |             |                                            |                                  |                             |         |                 |              |             |                                                            |

Studies on these hyperon states across different final states 2025年轻强子专题研讨会



## **Cross-channel studies**



 $\Lambda_{c}^{+} \rightarrow \Lambda^{*}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow nK_{S}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Sigma^{-}\pi^{+}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Sigma^{0}\pi^{0}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Sigma^{0}\pi^{0}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Sigma^{+}\pi^{-}\pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Lambda_{0}\pi^{+}$ 

 $\Lambda_c^+ \rightarrow \Sigma^{*+} \pi^0$ •  $\Lambda_c^+ \to p K_{\rm S} \pi^0$ •  $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ •  $\Lambda_c^+ \to \Sigma^+ \pi^0 \pi^0$ •  $\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0$ •  $\Lambda_c^+ \to \Sigma^+ \eta \pi^0$ •  $\Xi_c^+ \rightarrow p K_s \pi^0$ 

 $\Lambda_{c}^{+} \rightarrow \Sigma^{*0} \pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Lambda \pi^{0} \pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+}$ •  $\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}$ •  $\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}$ 

# $\mathfrak{H}^{+}_{c}$ data samples at BESIII







in total, 6.4 fb<sup>-1</sup> data above  $\Lambda_c^+$  threshold (~0.8M  $\Lambda_c^+\overline{\Lambda}_c^-$  pairs)



# Specialties of current ongoing experiments



€SШ



- Threshold production & two body process
- Clean background
- Absolute meas. with many systematics cancel out
- Missing-mass technique: neutron, neutrino ...
- Good photon resolution:  $\Sigma, \Xi, \pi^0, \dots$

- Large statistics: LHCb XS ~100 μb; Belle XS ~1 nb
- High background
- Good PID and vertexing
- Complex production environment
- Good hadron-ID and  $\mu$ -ID
- Good photon resolution in electron machines

#### They are complementary!

# **EVALUATE:** Observation of $\Lambda_c^+ \to pK^-e^+\nu$



#### **BESIII, PRD106, 112010 (2022)**



$$\begin{split} B(\Lambda_{\rm c}^+ &\to p K^- e^+ \nu_e) = (8.8 \pm 1.1 \pm 0.7) \times 10^{-4} \\ B(\Lambda_{\rm c}^+ &\to \Lambda(1520) e^+ \nu_e) = (10.2 \pm 5.2 \pm 1.1) \times 10^{-4} \end{split}$$

- Second leptonic decay of  $\Lambda_c^+$  is observed!
- Good channel to study  $\Lambda$  excited states, such as  $\Lambda(1405)$  and  $\Lambda(1520)$

## **EFENT** Amplitude analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$



JHEP12, 033 (2022)

- First amplitude analysis of charmed baryon multi-hadronic decays
- Based on TF-PWA package: <u>https://gitlab.com/jiangyi15/tf-pwa</u>



|                                                                 | Theoretical c                | This work           | PDG                |     |
|-----------------------------------------------------------------|------------------------------|---------------------|--------------------|-----|
| $10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$  | $4.81 \pm 0.58$ [13]         | $4.0 \ [14, \ 15]$  | $4.06\pm0.52$      | < 6 |
| $10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$ | $2.8 \pm 0.4$ [16]           | $2.2 \pm 0.4$ [17]  | $5.86 \pm 0.80$    |     |
| $10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$ | $2.8 \pm 0.4$ [16]           | $2.2 \pm 0.4$ [17]  | $6.47 \pm 0.96$    |     |
| $lpha_{\Lambda ho(770)^+}$                                      | $-0.27 \pm 0.04$ [13]        | -0.32 [14, 15]      | $-0.763 \pm 0.066$ |     |
| $lpha_{\Sigma(1385)^+\pi^0}$                                    | $-0.91^{+0.4}_{-0.2}$        | ${}^{45}_{10}$ [17] | $-0.917 \pm 0.083$ |     |
| $lpha_{\Sigma(1385)^0\pi^+}$                                    | $-0.91\substack{+0.4\\-0.2}$ | ${}^{45}_{10}$ [17] | $-0.79\pm0.11$     |     |

Many first measurements of intermediate states!

#### 2025年轻强子专题研讨会





#### $\Lambda_{\rm c}^+$ polarization and $\Lambda_{\rm c}^+ ightarrow p K^- \pi^+$ polarimetry LHCb, JHEP 07, 228 (2023)

LHCb, PRD108, 012023 (2023)

| Component              | Value (%)                          |
|------------------------|------------------------------------|
| $\overline{P_x (lab)}$ | $60.32 \pm 0.68 \pm 0.98 \pm 0.21$ |
| $P_{y}$ (lab)          | $-0.41\pm0.61\pm0.16\pm0.07$       |
| $P_z$ (lab)            | $-24.7\pm 0.6\pm 0.3\pm 1.1$       |
| $P_x(\tilde{B})$       | $21.65 \pm 0.68 \pm 0.36 \pm 0.15$ |
| $P_{y}(\tilde{B})$     | $1.08\pm 0.61\pm 0.09\pm 0.08$     |
| $P_z(\tilde{B})$       | $-66.5 \pm 0.6 \pm 1.1 \pm 0.1$    |

A large  $\Lambda_{c}^{+}$  polarization is found in *b* semi-leptonic decays  $\Lambda_h^0 \to \Lambda_c^+ \mu^- \nu$ 

- The obtained representation can facilitate polarization measurements of the  $\Lambda_c^+$  baryon and eases inclusion of the  $\Lambda_c^+ \rightarrow p K^- \pi^+$ decay mode in hadronic amplitude analyses.
- At BESIII, the transverse polarization of  $\Lambda_c^+$ can be obtained via  $\Lambda_c^+ \rightarrow p K^- \pi^+$ polarimetry

The amplitude model is used to produce the distribution of the kinematic-dependent polarimeter vector in the space of Mandelstam variables to express the polarized decay rate in a model-independent way.





The peaking structure is explained better by a threshold cusp than to a new hadron resonance by more than  $7\sigma$ 

mass:  $1674.3 \pm 0.8 \pm 4.9 \text{ MeV}/c^2$ width:  $50.3 \pm 2.9^{+5.5}_{-8.1} \text{ MeV}$ consistent with the  $\Lambda(1670)$ 



13



- no obvious structure in the  $pK_s^0$  mass distribution
- clear peaking structure near the  $p\eta$  mass threshold ( $N^*(1535)$ ?)



吕晓睿

## Intermediate states in $\Lambda_c^+ \rightarrow \Lambda \pi^+ \eta$



- A good channel to investigate different types of hadron states, especially tetraquark or pentaquark candidates
- $\Lambda_c^+ \to \Lambda \pi^+ \eta$  decay provides a good platform to study the internal structure of  $a_0(980)^+$  whose exact nature remains elusive.
- The  $\Lambda \pi^+$  mode, representing a pure I = 1 combination, excludes influences from  $\Lambda^*$  resonances as compared to the  $\Sigma \pi$  and pK modes.
- Study of low-lying excited <sup>1</sup>/<sub>2</sub><sup>-</sup> state, eg Σ(1380)<sup>+</sup>, can be performed, along with the nearby state Σ(1385)<sup>+</sup>
   [Wang et al, CPL 41, 101401 (2024)]
- Explore the  $\Lambda(1670)$  in  $\Lambda_c^+ \to \Lambda \pi^+ \eta$  and compare with that in  $\Lambda_c^+ \to p K^- \pi^+$

## Hyperons in $\Lambda_c^+ \to \Lambda \pi^+ \eta$

 $\Lambda_c^+ \rightarrow \eta \Sigma(1385)^+$ 





$${\cal B}(\Lambda_c^+ o \Sigma^{*+} \eta) = (0.91 \pm 0.18 \pm 0.09)\%_{\pm}$$



 $0.192 \pm 0.006 \pm 0.016$ 



#### 2025年轻强子专题研讨会

### **ESI** Partial wave analysis of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \eta$ PRL134, 021901 (2025)

- 8x  $\Lambda_c^+$  samples are used with combination of  $\eta \to \gamma \gamma$  and  $\pi^+ \pi^- \pi^0$
- BDTG trained sample with about 1312 signals with purity of about 80%
- Based on TF-PWA package: <u>https://gitlab.com/jiangyi15/tf-pwa</u>



## Baseline model of $\Lambda_c^+ \to \Lambda \pi^+ \eta$







## Test of $\Sigma(1380)^+$ in $\Lambda_c^+ \to \Lambda \pi^+ \eta$



Model A Baseline model Model B + Sweighted data + Sweighted data + Sweighted data Events / (0.020 GeV/c<sup>2</sup>) Events / (0.020 GeV/c<sup>2</sup>) Events / (0.020 GeV/c<sup>2</sup>) — Total fit - Total fit - Total fit 200 200 200  $--\Lambda a_0(980)^+$  $- \Lambda a_0(980)^+$  $-- \Lambda a_0(980)^+$  $-\Lambda NR_{0+}(\pi^+\eta)$  $-\Lambda NR_{0^+}(\pi^+\eta)$  $-\Sigma(1385)^{+}\eta$  $-\Sigma(1385)^{+}\eta$  $-\Sigma(1385)^{+}\eta$  $\Sigma(1380)^{+}\eta$  $\Sigma(1380)^{+}\eta$  $-\Lambda(1670)\pi^{+}$  $-\Lambda(1670)\pi^{+}$  $-\Lambda(1670)\pi^{+}$ 00 Total interference Total interference 100 Total interference 1001.3 1.5 1.7 1.3 1.5 1.4 1.6 1.3 1.5 1.6 1.7 1.4 1.6 1.7 1.4  $M_{\Lambda\pi^+}$  (GeV/ $c^2$ )  $M_{\Lambda\pi^+}$  (GeV/ $c^2$ )  $M_{\Lambda\pi^+}$  (GeV/ $c^2$ ) Model B Process Model A  $\Lambda a_0(980)^+$  $52.9 \pm 4.5 (13.4\sigma)$  $50.6 \pm 8.0 (11.1\sigma)$  $\Sigma(1385)^+\eta \ 36.6 \pm 2.6 \ (15.8\sigma) \ 31.3 \pm 3.0 \ (14.6\sigma)$  $\Lambda(1670)\pi^+$  10.7 ± 1.4 (15.0 $\sigma$ ) 9.0 ± 1.6 (11.9 $\sigma$ )  $\Sigma(1380)^+\eta \quad 15.5 \pm 4.4 \,(6.1\sigma)$  $17.7 \pm 5.7 (3.3\sigma)$  $\Lambda NR_{0^+}$  $11.3 \pm 4.4 (4.2\sigma)$ 

• An evidence of  $\Sigma(1380)^+$  is found with significance larger than  $3\sigma$ 



#### **Comparison of \Sigma^{\*+} helicity angles** PRL134, 021901 (2025)





Kinematic region:  $M_{\Lambda\pi^+} > 1.44 \text{ GeV/c}^2$  $M_{\Lambda\eta} > 1.72 \text{ GeV/c}^2$ 

Better description of  $\Sigma^{*+}$  helicity angle distribution with inclusion of  $\Sigma(1380)$ 



吕晓睿

20

## Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \eta$



This work **BESIII** previous Belle  $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \eta)(\%)$  $1.84 \pm 0.13$  $1.94 \pm 0.13$  $1.84 \pm 0.26$  $\mathcal{B}(\Lambda_c^+ \to \Lambda a_0(980)^+) \cdot \mathcal{B}(a_0(980)^+ \to \pi^+ \eta)(\%)$  $1.05\pm0.18$  $\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \eta) (\times 10^{-3})$  $9.1\pm2.0$  $6.78\pm0.76$  $12.1 \pm 1.5$  $\mathcal{B}(\Lambda_c^+ \to \Lambda(1670)^0 \pi^+) \cdot \mathcal{B}(\Lambda(1670)^0 \to \Lambda \eta) (\times 10^{-3})$  $2.74\pm0.62$  $3.48\pm0.53$  $0.91^{+0.09}_{-0.18}\pm0.08$  $\alpha_{\Lambda a_0(980)^+}$  $-0.61 \pm 0.15$  $\alpha_{\Sigma(1385)+\eta}$  $0.21\pm0.43$  $\alpha_{\Lambda(1670)^0\pi^+}$ 

| Decay Mode                                             | Ref. [19] Ref. [20]  |                           | Ref. [21]                                 | Ref. [14]                    |  |
|--------------------------------------------------------|----------------------|---------------------------|-------------------------------------------|------------------------------|--|
| $\Lambda_c^+ \to \Sigma(1385)^+ \eta (\times 10^{-3})$ | 10.4                 | $2.1 \pm 1.1/1.4 \pm 1.0$ | $6.2\pm0.5(3.1\pm0.6)$                    | $5.3 \pm 0.8  (7.3 \pm 1.5)$ |  |
| Decay Mode                                             |                      | Ref. [26]                 | Ref. [27]                                 |                              |  |
| $\Lambda_c^+ \to \Lambda a_0(980)^+$                   | $1.9 \times 10^{-4}$ |                           | $(1.7^{+2.8}_{-1.0}\pm 0.3)	imes 10^{-3}$ |                              |  |

- If taking  $\mathcal{B}(a_0(980)^+ \to \pi^+\eta) = (85.3 \pm 1.4)\%$ ,  $\mathcal{B}(\Lambda_c^+ \to \Lambda a_0(980)^+) = (1.23 \pm 0.21)\%$ , which differs significantly larger than theoretical prediction by 1-2 orders of magnitude.
- Large decay asymmetry in  $\Lambda_c^+ \rightarrow \Lambda a_0(980)^+$



## $\Lambda(1670)$ decay rates



Comparing the fraction of the  $\Lambda(1670)$  in  $\Lambda_c^+ \to \Lambda \pi^+ \eta$  and that in  $\Lambda_c^+ \to p K^- \pi^+$ :

 $\mathcal{B}(\Lambda_{c}^{+} \to \Lambda(1670)\pi^{+}, \Lambda(1670) \to \Lambda\eta) = (2.74 \pm 0.62) \times 10^{-3} [BESIII2025]$   $\frac{\mathcal{B}(\Lambda_{c}^{+} \to \Lambda(1670)\pi^{+}, \Lambda(1670) \to pK^{-})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (1.18 \pm 0.33)\% [LHCb \ 2023]$   $\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+}) = (6.24 \pm 0.28)\% [PDG2024]$ We have  $\frac{\mathcal{B}(\Lambda(1670) \to pK^{-})}{\mathcal{B}(\Lambda(1670) \to \Lambda\eta)} = (26.9 \pm 9.7)\%$ 

 $\Lambda(1670)$  decay modes

|                                              | Fraction ( $\Gamma_i$ / $\Gamma$ ) |                 | Mode       |
|----------------------------------------------|------------------------------------|-----------------|------------|
| The rate of $N\overline{K}$ from the previou | 20-30%                             | $N\overline{K}$ | $\Gamma_1$ |
| measurement seems too large!                 | <b>25</b> –55%                     | $\Sigma\pi$     | $\Gamma_2$ |
|                                              | 10-25%                             | $\Lambda\eta$   | $\Gamma_3$ |



2025年轻强子专题研讨会

## Summary



- Charmed baryon multi-body weak decays provide a unique laboratory to study the light hadron spectroscopy
- In recent years, experimental activities are mostly on the  $\Lambda_c^+$  decays, esp. at BESIII, LHCb and Belle
- Amplitude analysis is a necessary to disentangle the interferences of different intermediate states
  - $\checkmark \quad \Lambda_c^+ \to p K^- \pi^+ \text{ at LHCb}$
  - $\checkmark \Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$  and  $\Lambda \pi^+ \eta$  at BESIII
- More studies are expected not only on  $\Lambda_c^+$  decays, but also on  $\Xi_c^{+/0}$  and  $\Omega_c^0$  decays. For example:
  - ✓ Amplitude analysis on  $\Lambda_c^+ \rightarrow \Lambda 3\pi$  to understand the  $\Lambda\pi$  structure as a  $\Sigma(1430)$  or N $\overline{K}$  threshold cusp
  - ✓ Cross-channel studies via  $\Lambda_{c}^{+} \rightarrow pK_{S}\pi^{0}$ , pKK,  $p\pi\pi$ ,  $pK^{+}\pi^{-}$  and  $pK\pi\pi$ ;  $\Lambda_{c}^{+} \rightarrow \Sigma\pi\pi$ ;  $\Xi_{c} \rightarrow \Xi hh'$ ,  $\Sigma hh'$ ,  $\Lambda hh'$ , p3h/p2h;  $\Omega_{c} \rightarrow \Omega^{-}\pi^{+}\pi^{0}$ ,  $\Xi \overline{K} \pi^{+}$
  - ✓ Semi-leptonic decays of  $\Lambda_{c}^{+} \rightarrow pK^{-}\mu^{+}\nu$

Thank you!





## Backup





#### Test FSI model of $a_0(980)^+$ and $\Lambda(1670)$





Large interference between  $a_0(980)^+$  FSI with NR





26

#### Structures in $\Lambda_c^+ \to pK^-K^+$ and $\Lambda_c^+ \to p\pi^-\pi^+$



#### LHCb, JHEP03,182(2018)







## **Future prospects**





## **Herefore Proposal of the upgrade BEPCII**



An upgrade of BEPCII (**BEPCII-U**) has been approved in July 2021 and planned to be completed by the end of 2024 ✓ Improve luminosity by 3 times higher than current BEPCII at 4.7 GeV

✓ Extend the maximum energy to 5.6 GeV



| Energy        | Physics motivations                          | Current data                         | Expected final data                             | $T_{\rm C}$ / $T_{\rm U}$ |
|---------------|----------------------------------------------|--------------------------------------|-------------------------------------------------|---------------------------|
| 4.6 - 4.9 GeV | Charmed baryon/XYZ<br>cross-sections         | $0.56 \text{ fb}^{-1}$<br>at 4.6 GeV | $15 \text{ fb}^{-1}$<br>at different $\sqrt{s}$ | 1490/600 days             |
| 4.74  GeV     | $\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section | N/A                                  | $1.0 \text{ fb}^{-1}$                           | 100/40 days               |
| 4.91  GeV     | $\Sigma_c \overline{\Sigma}_c$ cross-section | N/A                                  | $1.0 \text{ fb}^{-1}$                           | 120/50  days              |
| 4.95  GeV     | $\Xi_c$ decays                               | N/A                                  | $1.0 \text{ fb}^{-1}$                           | 130/50 days               |



#### 2025年轻强子专题研讨会

## Heavier charmed baryons







• Energy thresholds

$$\begin{array}{ccc} \checkmark & e^+e^- \to \Lambda_c^+\Sigma_c^- \\ \checkmark & e^+e^- \to \Lambda_c^+\overline{\Sigma}_c \ \pi \\ \checkmark & e^+e^- \to \Sigma_c \ \overline{\Sigma}_c \end{array}$$

$$\checkmark e^+e^- \to \Xi_c \ \overline{\Xi}_c$$
$$\checkmark e^+e^- \to \Omega_c^0 \overline{\Omega}_c^0$$

4.74 GeV 4.88 GeV 4.91 GeV 4.94 GeV

5.40 GeV

- Cover all the ground-state charmed baryons: studies on their production & decays, CPV search, to help developing more reliable QCD-derived models in charm sector
- Studies on the production and decays of excited charmed baryons

#### Future opportunity at LHCb and Belle II





- RUN1&2: 9  $fb^{-1}$
- RUN3&4: 50  $fb^{-1}$
- $\rightarrow$  x10 more statistics



- Belle:  $1 \text{ ab}^{-1}$
- Belle II:  $>0.55 \text{ ab}^{-1}$
- Future Belle II:  $50 \text{ ab}^{-1}$