

CEPC 探测器研发进展 Development of CEPC Reference Detector

李一鸣(中国科学院高能物理研究所) LI Yiming (IHEP, CAS)

轻强子专题研讨会@安阳,2025年5月9日 Light Hadron Workshop @ Anyang, 9 May 2025

- CEPC an introduction
- Preparation of Ref-TDR:
 - What, when and who
 - Technical options and highlights
- Summary

CEPC Circular Electron Positron Collider

CEPC is proposed by Chinese physicists in 2012 right following Higgs discovery

- A Higgs factory, to measure its properties to unprecedented level portal to New Physics?
- Also a factory of Z / W / ttbar, for precision EW studies and heavy flavour studies
- A ring of ~100km, at least two interaction points
- Potential of upgrade to a pp collider of \sqrt{s} ~ 100 TeV in the future

Milestones

- 2025.06 release ofReference detector TDR
- 2025: CEPC proposal
- 2027: Accelerator EDR
- 15th Five-Year: Construction

starts?

CEPC Reference Detector TDR

- The CEPC study group is preparing for a Reference Detector TDR (Ref-TDR) aiming at release in June 2025, for domestic endorsement
- Better technologies and R&D will continue be pursued
 - Final detectors (>=2) will be determined within international collaborations

Date	Actions and/or Expectations	
Jan 1, 2024	Start the process by comparing different technologies	
Jun 30, 2024	Baseline technologies, general geometric configuration and key issues are decided	
Oct 31, 2024	Discuss the ref-TDR at the CEPC workshop, report progresses to the CEPC IAC	
Dec 31, 2024	The first draft of the ref-TDR is ready for internal reviews	
Apr 15, 2025 international review		
Jun 30, 2025	The ref-TDR for ready for public reviews	
Oct 30, 2025 Submit the ref-TDR for publication		

Operation plan

SR Power	Luminosity/IP [×10 ³⁴ cm ⁻² s ⁻¹]			
Per Beam	Н	Z	W+M-	
12.1 MW	-	26	-	
30 MW	5.0	-	16	
50 MW	8.3	-	26.7	

10 yrs

- Ref-TDR mainly designed for the first 10 years:
 - Higgs, Iow-Iumi Z, WW
- Accelerator might be upgraded for high-lumi Z or ttbar after first 10-year, subject to physics needs

SR Power	L	uminosi	ty/IP [×1	0 ³⁴ cm ⁻² s ⁻	¹]
Per Beam	H	Z (2T)	Z(3T)	W+M-	tī
30 MW	5.0	115	50.3	16	0.5
50 MW	8.3	192	95.2	26.7	0.8
	2 yrs			1 yr	5 yrs

7

Key requirements

Sub-system	Key technology Key Specifications	
Vertex	6-layer CMOS SPD	$\sigma_{r_{\phi}}$ ~ 3 μm, X/X ₀ < 0.15% per layer
Tracking CMOS pixel ITK, AC-LGAD strip OTK, TPC + Vertex detector		$\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{P \times \sin^{3/2}\theta} (GeV^{-1})$
Particle ID	dN/dx measurements by TPC Time of flight by AC-LGAD strip	Relative uncertainty ~ 3% σ(t) ~ 30 ps
EM calorimeter	High granularity crystal bar PFA calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Granularity ~ $1 \times 1 \times 2 \text{ cm}^3$
Hadron calorimeter	Scintillation glass PFA hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\% / \sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\% / \sqrt{E(GeV)}$

- Key specification continue to be optimised
 - Iterative process as understanding of physics reach evolves

Detector overview

CEPC MDI, beam background & LumiCal

- Machine-Detector Interface involves design of central beampipe
- Background rate are simulated and digitized – essential input for shielding design and subdetectors
- LumiCal based on LYSO bar and silicon strips aiming for 1e-4 precision

Fluence map caused by pair-production

Vertex detector

- R&D on MAPS for > 10 years
 - Large-size chips achieve <5 um point resolution; aiming for 3um
 - Module prototype successfully tested in beams
- Baseline: stitching + bent MAPS
 - For ultimate goal of $0.15\%X_0$ material budget
 - Easier cooling with air

Figure 4.26: 12 mm bending radius.

Inner Tracker

- Key component for tracking (esp. low p) and PID
- Pixelated TPC with pad size 500um to suppress Ion Back Flow
- Novel cluster counting method (dN/dx) for $3\sigma K/\pi$ separation

(Timing and) Outer Tracker

- Outermost tracking layer ~ 85m² with $\sigma_{r\phi}$ ~ 10 um
- $\sigma_t \sim 50$ ps to cover low-momentum PID
- AC-LGAD strips to provide both spatial and timing
- Sensor prototype submitted for full-length validation

Electromagnetic Calorimeter

- PFA-based calorimetry to achieve Boson Mass Resolution ($H \rightarrow jj$) < 4%
- Long BGO crystal + SiPM, targeting $\sigma_E/E < 3\%/\sqrt{E}$, BMR (H→ $\gamma\gamma$) ~0.6 GeV
 - Save readout channels, minimise dead materials
 - Challenging for pattern recognition: dedicated CyberPFA algorithm
 - Prototype tested in beams; granularity being optimised

Hadron Calorimeter

- Jet energy of $30\% / \sqrt{E}$ required for WW/ZZ separation
- Glass scintillator + SiPM explored:
 - High density, low cost
- GS collaboration formed for better glass and mass production
- A full-scale prototype being built for beamtest

Parameters	Unit	Goal	BGO	GS1	GS1+	GS5
Density	g/cm ³	6	7.13	6.0	6.0	5.9
Rad. Length, X ₀	cm		1.12	1.59	1.60	1.61
Transmittance	%		82	70	80	80
Refractive Index			2.1	1.74	1.71	1.75
Emission Peak	nm		480	400	390	390
Light Yield, LY	ph/MeV	1000	8000	985	2445	1154
Energy Resol, ER	%		9.5	30.3	25.8	25.4
Decay time	ns	~100	60, 300	36, 105	101, 1456	90, 300

Muon Detector

Pion Rejection (%) 100 102 26 (%)

105

95

Vith Muon Detector

 $p_{\tau} > 3 \text{ GeV}$ and $30^{\circ} < \theta < 150^{\circ}$

Without Muon Detector

17

- Extruded plastic scintillator + WLS fibre + SiPM
- Magnet return yoke as muon absorber
- Provide Muon ID for p > 4 GeV
- Total detection area ~4500 m², ~40k channels

Superconducting Solenoid

Baseline: Low-temperature SC design

- For better uniformity, less space, cost-effectiveness
- Sample of 5m Aluminum stabilized NbTi Rutherford Cable produced
- R&D on high-temperature SC continues

Central B field	3 T
Inner diameter	7070 mm
Outer diameter	8470 mm
Thickness	700 mm
Length	9050 mm
Cold mass	185 tons
Yoke weight	2960 tons
Magnet weight	290 tons

Opt. A: Second co-extrusion process

32 strands Rutherford cable

First co-extrusion Al-Ni-Be stabilizer +Rutherford cable

Opt. B: The Al-Ni-Be stabilizer conductor sample

18

Electronics and TDAQ

Triggerless frontend readout + backend trigger

- Maximising common designs
 - Common FE ASICs: data aggregation, transmission, optical conversion, SiPM readout,...
 - Common BE & common trigger
- Alternative R&D on wireless transmission to reduce cabling hence material

Software and computing

- **CEPCSW** framework built upon common HEP packages:
 - Gaudi, EDM4hep, k4FWCore,DD4hep
- Web-based PHOENIX tool for visulisation
- RefTDR detector implemented & released for performance study
- Novel technologies being explored: eg. Quantum algorithms

Key performance

- With recent CEPCSW release, benchmarking physics processes identified and being studied
- Key performance of tracking, PID, jet and PFA are studied

Mechanics

Detailed design for detector mechanical structure and installation
Infrastructure, cooling and experimental hall design in place

1	IHEP, CAS	All			
2	Inst of Microelectronics	SiDet,Elec			
3	Shanghai Inst of Ceramics	ECal,HCal			
4	Shanghai Inst of Optics & Fine Mechics	HCal			
5	Zhangjiang Laboratory	SiDet			
6	Ganjiang Innovation Academy	HCal			
7	Instittute of Modern Physic, CAS	GasD			
8	China Institute of Atomic Energy	GasD			
9	Shandong Inst of Advanced Tech	SiDet,GasD			
10	Peking U	GasD,Phys			
11	Tsinghua U	SiDet,GasD,Elec,Phys			m
12	Fudan U	HCal,Mu,Sftw,Phys			
13	Shanghai Jiaotong U	MDI,SiDet,ECal,HCal,Mu,Mag,Phys		-	
14	Zhejiang U	SiDet,HCal		work	
15	Nanjing U	MDI,VTX,SiDet,Elec,Sftw,Phys			
16	U of Sci & Tech	ECal,Elec,Sftw			
17	Beihang U	Phys			
18	Southeast U	Mu,Phys			
19	Wuhan U	Sftw			
20	Harbin Inst of Tech	HCal			
21	Xi'an Jiaotong U	SiDet			
22	Nankai U	VTX,SiDet,Mu,Tdaq,Sftw,Phys			
23	Sun Yat-Sen U	SiDet,GasD,HCal,Sftw	40	Dalian Minzu U	SiDet
24	Sichuan U	HCal	41	Liaoning Normal U	Phys
25	NorthWest Polytechnical U	VTX,SiDet,Elec	42	U South China	SiDet
26	Shandong U	VTX,SiDet,GasD,Elec,Tdaq,Sftw	43	Wuhan Textile U	SiDet,Elec
27	Jilin U	MDI,GasD,Sftw	44	Hubei Polytechnic U	SiDet,Elec
28	Hunan U	SiDet,Mech	45	Jinggangshan U	HCal
29	Lanzhou University	GasD	46	China Jiliang U	HCal
30	Zhengzhou U	VTX,SiDet,GasD,HCal,Tdaq,Sftw,Phys	47	yanshan University	SiDet
31	Southwest Jiaotong U	MDI,Mag	48	Zhengzhou University of Light Industry	SiDet,Mech
32	Central China Normal U	VTX,Elec	49	Gannan Normal University	SiDet,Elec
33	North China Electric Power U	Мад	50	Beijing Conveyi Limited	SiDet
34	Harbin Engineering U	HCal	51	China Building Material Academy	HCal
35	Wuhan University of Technology	GasD,HCal	52	Beijing Glass Research Inst	HCal
36	South China Normal U	Mu,Sftw,Phys	53	Shanghai Superconducting Tech Co	Mag
37	Hefei University of Technology	SiDet	54	Citic Heavy Instructries Co	Mech
38	Nanchang U	VTX,SiDet	55	Yellow River Engineering Consulting Co	Mech
39	Taiyuan University of Technology	SiDet	56	Wuxi Toly Electric Works Co	Mag

	1	CERN ECFA DRD collaborations	Nearly All
	2	ALICE collaboration	VTX,SiDet
	3	INFN / Milano	SiDet,GasD
ĺ	4	INFN / Torino	SiDet,GasD
	5	INFN / Bari, Politecnico U of Bari	GasD
	6	INFN LNF (Frascati)	ECal
ĺ	7	IN2P3 / IPHC, Strasbourg	VTX
	8	IN2P3 / IJCLab, Orsay	ECal
ĺ	9	IN2P3 / LLR, Palaiseau	ECal
	10	IN2P3 / IP2I, Lyon	ECal
Ī	11	IN2P3 / CPPM, Marseille	VTX
	12	CEA / IRFU, Saclay	GasD
ľ	13	KIT	SiDet
ľ	14	Bonn U	GasD
ľ	15	DESY	SiDet,GasD
	16	Lancaster U	SiDet
Ī	17	Edinburgh U	SiDet
Ī	18	Bristol U	SiDet
	19	NIKHEF	GasD
	20	IFAE (Inst De Fiscia d'Altes Energies)	VTX
	21	ULB (Universite Libre de Bruxelles)	HCal
	22	LPI (Lebedev Physical Inst, RAS)	ECal,Mu,Phys
	23	HSE (University Higher School of Economics)	Mu
	24	MIPT (Moscow Institute of Physics and Technology)	Mu
	25	BINP (Budker Inst of Nuclear Physics, RAS)	ECal,HCal,Mu
	26	INR (Inst of Nuclear Research, RAS)	HCal
	27	JINR (Joint Inst of Nucl Research)	SiDet,GasD,ECal,HCal
	28	ISPM (Inst of Synthetic Polymeric Materials, RAS)	HCal
	29	Vinca Inst of Nuclear Sciences	MDI
	30	University of Belgrade	Phys
	31	AGH University of Krakow	MDI
	32	JSI (Jozef Stefan Institute,Ljubljana)	SiDet
ľ	33	University of Montenegro	SiDet
	34	Institute of Physics, IPAS	MDI,Elec
	35	National Centre for Physics, Pakistan	Phys
	36	Tokyo U	GasD,ECal
ľ	37	Shinshu U	ECal
	38	lwate U	GasD
	39	KEK	GasD

Ref-TDR status and timeline

Technical Design Report

Version: 0.2 build: 2025-04-12 20:12:00+08:00

- 1) Physics Goal and Requirements
- 2) Concept Introduction
- 3) MDI and Luminosity Detectors
- 4) Vertex Detector
- 5) Silicon Trackers
- 6) Gaseous Trackers
- 7) Electromagnetic Calorimeter
- 8) Hadron Calorimeter
- 9) Muon Detector
- 10) Superconducting Solenoid Magnet
- 11) General Electronics
- 12) Trigger and Data Acquisition
- 13) Software and Computing
- 14) Mechanics and Integration
- 15) Physics Performance
- 16) Overall Cost and Project Timeline

- 16 chapters
- Two iteration of IDRC review
 - Oct 2024 / Apr 2025
 - A lot of constructive suggestions & recommendations
- Finalising the draft expected release in end June and publication for journal later

The CEPC International Detector Committee Meeting in 2024

- CEPC is preparing for a Reference detector TDR
- Many new technologies explored with huge amount of R&D work
- Detector design is being optimised for better physics performance
- The document is expected to release soon stay tuned
- ... and your interest and participation is most welcome!

