Test the two-pole structure of the $\Xi(1820)$ state

梁伟红

广西师范大学

2025年轻强子专题研讨会 2025年5月8-12日,安阳

Based on: R. Molina, WHL, C.W. Xiao, Z.F. Sun, E. Oset, PLB856 (2024) 138872;
WHL, R. Molina, E. Oset, PRD110 (2024) 036005;
M.Y. Duan, J. Song, WHL, E. Oset, EPJC84 (2024) 947.

Outline

♦ Introduction: two-pole structure and the Ξ(1820) state
♦ Reactions testing the two states of Ξ(1820)

•
$$\psi(3686) \to \overline{\Xi}^+ K^- \Lambda$$

- $\psi(3686) \rightarrow \bar{\Xi}^+ \bar{K}^0 \Sigma^{*-} \rightarrow \bar{\Xi}^+ \bar{K}^0 \pi^- \Lambda$
- $\Omega_c \to \pi \pi \Xi^*, \ \eta \pi \Xi^*$

• Introduction: two-pole structure and the $\Xi(1820)$ state

• Two-pole structure: $\Lambda(1405)$ 1426+16 *i*, couples strongly Oller, Meißner, PLB500(2001)263; to KN. Jido, Oller, Oset, Ramos, Meißner, NPA725(2003)181 1390+66 *i*, **——** 1580 couples strongly Pseudoscar meson – baryon $(\frac{1}{2}^+)$ (I=1)to $\pi\Sigma$. interaction in S = -1 sector, from [MeV] LO of chiral Lagrangians. 150 ---- disappear x=0.5 (I=1)lm z_R 100 Detailed review papers: *x*=0.6 ---- 1390 x=1.0 x=0.5 ____ 1426 ----- 1680 (I=0)Meißner, Symmetry 12(2020)981; 50 (I=0)(I=0)x = 1.0Mai, Eur.Phys.J.ST 230 (2021)1593. *x*=1.0 x=0.50 $x=0.5^{\circ}$ x=0.51500 1600 1300 1400 1700 Other two-pole states:

 $D_0^*(2300), K_1(1270), Y(4260), \cdots$

Fig. 1. Trajectories of the poles in the scattering amplitudes obtained by changing the SU(3) breaking parameter x gradually. At the SU(3) symmetric limit (x = 0), only two poles appear, one is for the singlet and the other for the octets. The symbols correspond to the step size $\delta x = 0.1$. 3

Singlet

Octet

 $\text{Re} z_{R}$ [MeV]

• Introduction: two-pole structure and the $\Xi(1820)$ state

• Two states of $\Xi(1820)$

The work of $\Lambda(1405)$ was extended to pseudoscar meson – baryon $(\frac{3}{2}^+)$ interaction.

Four coupled channels : $\Sigma^* \overline{K}$, $\Xi^* \pi$, $\Xi^* \eta$, ΩK (S = -2) [1878] [1669] [2078] [2165]

Transition potential:

$$V_{ij} = -\frac{1}{4f^2}C_{ij}(k^0 + k'^0); \ f = 1.28f_{\pi}, \ f_{\pi} = 93 \text{ MeV},$$

Bethe-Salpeter (BS) equation: $T = [1 - VG]^{-1}V$.

C_{ij}	$\Sigma^*ar{K}$	$\Xi^*\pi$	$\Xi^*\eta$	ΩK
$\Sigma^*ar{K}$	2	1	3	0
$\Xi^*\pi$		2	0	$\frac{3}{\sqrt{2}}$
$\Xi^*\eta$			0	$\frac{3}{\sqrt{2}}$
ΩK				3

Sarkar, Oset, Vicente Vacas, NPA750(2005)294; Molina, WHL, Xiao, Sun, Oset, PLB856(2024) 138872.

Table 2

Pole positions and couplings for $q_{\text{max}} = 830$ MeV. All quantities are given in units of MeV.

Poles	$ g_i $	g_i	channels
1824 - 31i	3.22	3.22 – 0.096 <i>i</i>	$ar{K}\Sigma^*$
	1.71	1.55 + 0.73i	$\pi \Xi^*$
	2.61	2.58 - 0.38i	$\eta \Xi^*$
	1.62	1.47 + 0.67i	$K\Omega$
1875 – 130 <i>i</i>	2.13	0.29 + 2.11i	$ar{K}\Sigma^*$
	3.04	-2.07 + 2.23i	$\pi \Xi^*$
	2.20	1.11 + 1.90i	$\eta \Xi^*$
	3.03	-1.77 + 2.45i	$K\Omega$

Two poles correspond to $\Xi(1820)$.

• Reactions testing the two states of $\Xi(1820)$: $\psi(3686) \rightarrow \bar{\Xi}^+ K^- \Lambda$

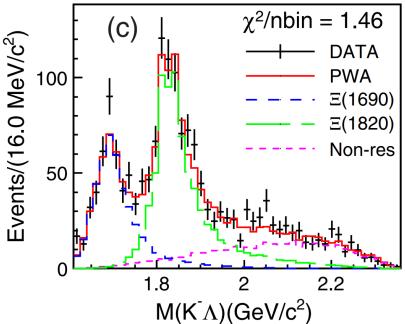
•
$$\psi(3686) \rightarrow \bar{\Xi}^+ K^- \Lambda$$

New results from BESIII

TABLE VI. Results obtained for $I(J^P)$, mass and width for each component. The first (second) uncertainty is statistical (systematic).

Resonance	$I(J^P)$	M (MeV/ c^2)	Γ (MeV)
$\Xi(1690)^{-}$	$1/2(1/2^{-})$	$1685^{+3}_{-2} \pm 12$	$81^{+10}_{-9} \pm 20$
$\Xi(1820)^{-}$	$1/2(3/2^{-})$	$1821^{+2}_{-3} \pm 3$	$73^{+6}_{-5} \pm 9$

BESIII, PRD109(2024)072008;



 $\text{PDG estimate:} \ \ \mathbf{M}_{\Xi(1820)}^{\text{PDG}} = \mathbf{1823} \pm \mathbf{5} \ \text{MeV}, \qquad \mathbf{\Gamma}_{\Xi(1820)}^{\text{PDG}} = \mathbf{24}_{-10}^{+15} \ \text{MeV}$

The width of $\Xi(1820)$ is much bigger, and incompatible with that of PDG!

One or two states for $\Xi(1820)$?

• Reactions testing the two states of $\Xi(1820)$

- > Two states of $\Xi(1820)$ in $\psi(3686) \rightarrow \overline{\Xi}^+ K^- \Lambda$
 - \checkmark The first test

The amplitude is of the type

$$t = \sum_{i,j} A_j \,\vec{\epsilon}_{\psi} \cdot \vec{p}_{\bar{\Xi}} \,G_j(PB^*) \,T_{ji} \,C_i \,\tilde{k}^2$$

$$\sim \sum_{i,j} D_{ij} \, \tilde{k}^2 \, \vec{\epsilon}_{\psi} \cdot \vec{p}_{\bar{\Xi}} \, T_{ji},$$

The invariant mass distribution:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}M_{\mathrm{inv}}(K^{-}\Lambda)} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\psi}^{2}} p_{\bar{\Xi}} \tilde{k} \sum_{ij} |t|^{2}$$
$$= W p_{\bar{\Xi}}^{3} \tilde{k}^{5} \sum_{ij} \left| D_{ij} T_{ji} \right|^{2},$$

Back ground: $C p_{\Xi} \tilde{k}$,

with *W* and *C* arbitrary weights.

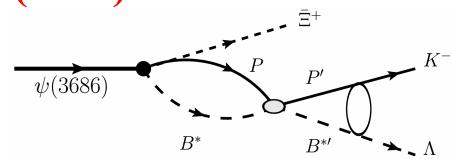
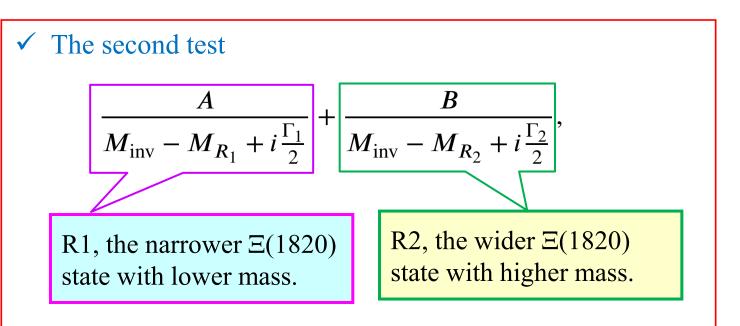


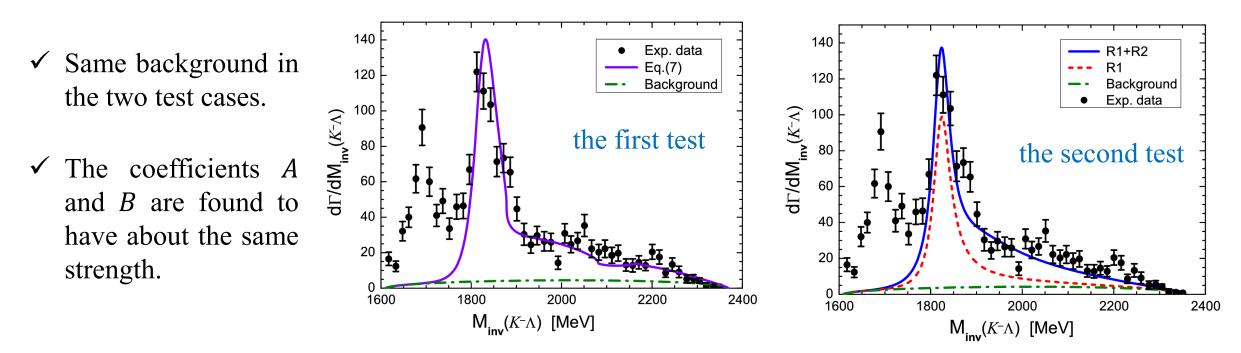
Fig. 1. The resonant mechanism for the production of $\bar{\Xi}^+ K^- \Lambda$ in the $\psi(3686)$ decay. P(P') and $B^*(B^{*'})$ stand for pseudoscalar meson and decuplet baryon, respectively.



Adjust the coefficients A and B to fit the data.

• Reactions testing the two states of $\Xi(1820)$: $\psi(3686) \rightarrow \overline{\Xi}^+ K^- \Lambda$

> Two states of $\Xi(1820)$ in $\psi(3686) \rightarrow \overline{\Xi}^+ K^- \Lambda$



✓ A fair description of the data is obtained, supporting the two states of $\Xi(1820)$.

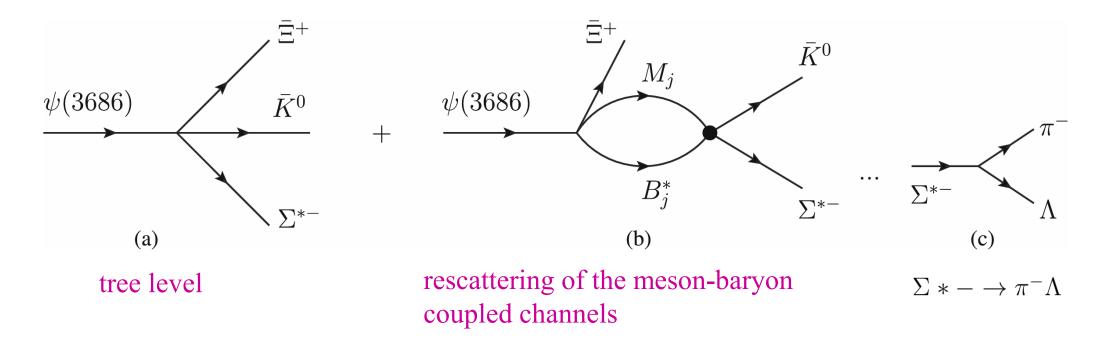
 ✓ Mostly the narrow resonance at 1824 MeV shows up, with the wider resonance providing strength in the higher energy region.

•
$$\psi(3686) \rightarrow \bar{\Xi}^+ \bar{K}^0 \Sigma^{*-} \rightarrow \bar{\Xi}^+ \bar{K}^0 \pi^- \Lambda$$

with a threshold ~1880 MeV

Coupled channels: $\bar{K}^0 \Sigma^{*-}$, $K^- \Sigma^{*0}$, $\pi^0 \Xi^{*-}$, $\eta \Xi^{*-}$, $\pi^- \Xi^{*0}$, $K^0 \Omega^-$

The mechanism for $\psi(3686) \rightarrow \bar{\Xi}^+ \bar{K}^0 \Sigma^{*-}$:



8

The decay amplitude for
$$\psi(3686) \rightarrow \bar{\Xi}^+ \bar{K}^0 \Sigma^{*-}$$
:
 $t = C \langle B^* | (\mathbf{S}^+ \times \mathbf{p}_{\bar{\Xi}^+}) \cdot \boldsymbol{\epsilon} | \Xi^- \rangle t', \quad t' = W_{\bar{K}^0 \Sigma^{*-}} + \sum_j W_j G_j \underbrace{t_{j,\bar{K}^0 \Sigma^{*-}}}_{j,\bar{K}^0 \Sigma^{*-}},$

B^{*} is the baryon of the $\frac{3}{2}^+$ multiplet, ϵ the vector polarization of the ψ (3686) **S**⁺ is the spin transition operator from spin $\frac{1}{2}$ to $\frac{3}{2}$

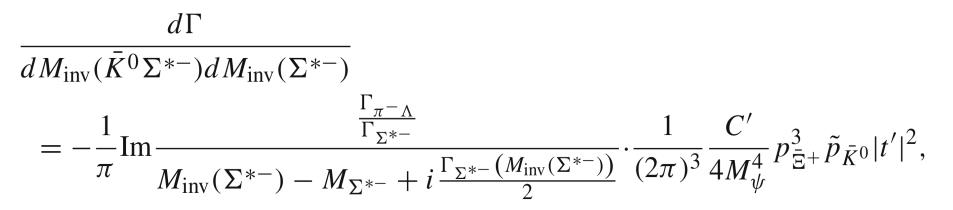
Table 2
channels
$$W_j$$
Clebsch–Gordan coefficients for the different coupled
channelsChannels $\bar{K}^0 \Sigma^{*-}$ $K^- \Sigma^{*0}$ $\pi^0 \Xi^{*-}$ $\eta \Xi^{*-}$ $\pi^- \Xi^{*0}$ $K^0 \Omega^ W_j$ $-\sqrt{\frac{2}{15}}$ $-\sqrt{\frac{1}{15}}$ $\sqrt{\frac{1}{15}}$ $-\sqrt{\frac{1}{5}}$ $-\sqrt{\frac{2}{15}}$ $\sqrt{\frac{2}{5}}$

The mass distribution for the decay $\psi(3686) \rightarrow \bar{\Xi}^+ \bar{K}^0 \Sigma^{*-}$:

$$\frac{d\Gamma}{dM_{\rm inv}(\bar{K}^0\Sigma^{*-})} = \frac{1}{(2\pi)^3} \frac{1}{4M_{\psi}^2} p_{\bar{\Xi}^+} \tilde{p}_{\bar{K}^0} \sum |t|^2 2M_{\bar{\Xi}^+} 2M_{\Sigma^{*-}}
= \frac{1}{(2\pi)^3} \frac{C'}{4M_{\psi}^4} p_{\bar{\Xi}^+}^3 \tilde{p}_{\bar{K}^0} |t'|^2,$$

9

The mass distribution for $\psi(3686) \rightarrow \bar{\Xi}^+ \bar{K}^0 \Sigma^{*-} \rightarrow \bar{\Xi}^+ \bar{K}^0 \pi^- \Lambda$:



with the energy dependence of the Σ^{*-} width as

$$\Gamma_{\Sigma^{*-}}\left(M_{\rm inv}(\Sigma^{*-})\right) = \Gamma_{\rm on}\frac{M_{\Sigma^{*-}}}{M_{\rm inv}(\Sigma^{*-})}\left(\frac{\tilde{p}_{\pi}}{\tilde{p}_{\pi,\rm on}}\right)^3,$$

with Γ_{on} the width of Σ^{*-} , $\Gamma_{\pi^{-}\Lambda}/\Gamma_{\Sigma^{*-}} = 87\%$.

$$\tilde{p}_{\pi} = \frac{\lambda^{1/2} \left(M_{\text{inv}}^2(\Sigma^{*-}), m_{\pi}^2, m_{\Lambda}^2 \right)}{2 M_{\text{inv}}(\Sigma^{*-})}, \qquad \tilde{p}_{\pi,\text{on}} = \frac{\lambda^{1/2} \left(m_{\Sigma^{*-}}^2, m_{\pi}^2, m_{\Lambda}^2 \right)}{2 m_{\Sigma^{*-}}}.$$

- ✓ There is destructive interference of the tree level and the two $\Xi(1820)$ states.
- ✓ The actual mass distribution differs appreciably from phase space.
- ✓ The phase space for $\bar{K}^0\Sigma^{*-}$ production reduces the effect of the lower mass $\Xi(1820)$.
- ✓ The excess of strength above 1900 MeV is due to the wide $\Xi(1820)$ state with higher mass.

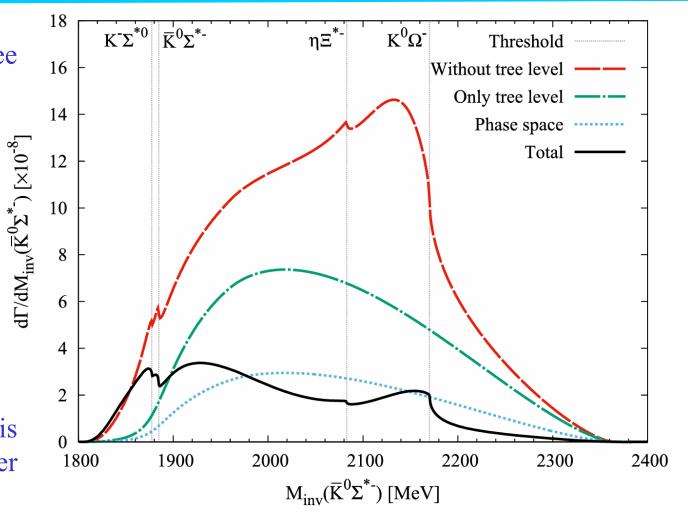


Fig. 2 $d\Gamma/dM_{\rm inv}(\bar{K}^0\Sigma^{*-})$ with different options.

The proposed reaction is particularly suited to show the effect of the higher $\Xi(1820)$ state.

• Reactions testing the two states of $\Xi(1820)$: $\Omega_c^0 \to \pi(\eta)\pi \Xi^*$

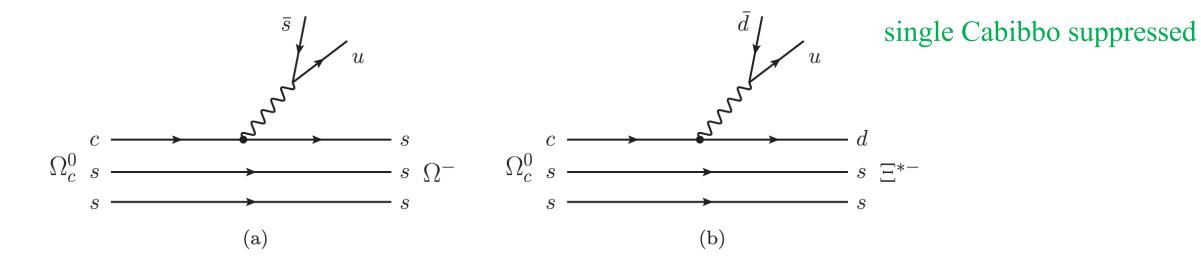


FIG. 1. The two topological structures with external emission that lead to Ω^{-} (a) and Ξ^{*-} (b) in the final state.

$$\begin{aligned} \text{Hadronization:} & P = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} & K^0 \\ \kappa^- & \bar{K}^0 & -\frac{\eta}{\sqrt{3}} \end{pmatrix} \\ & u\bar{d} \to \sum_i u\bar{q}_i q_i \bar{d} = P_{1i} P_{i2} = (P^2)_{12} & = \left(\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{3}}\right) \pi^+ + \pi^+ \left(-\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{3}}\right) + K^+ \bar{K}^0. \end{aligned}$$

___ \

,

• Reactions testing the two states of $\Xi(1820)$: $\Omega_c^0 \to \pi(\eta) \pi \Xi^*$

with a threshold ~1670 MeV

To generate the $\Xi(1820)$ resonance in the final state, we have to allow one of the mesons to interact with the Ω^- or Ξ^{*-} .

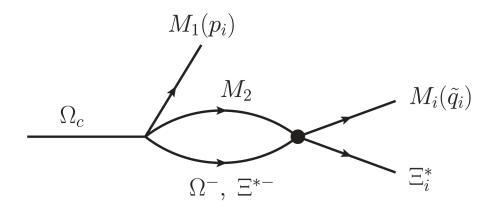


FIG. 2. Final state interaction of a meson with the baryon of the decuplet $3/2^+$. The dot indicates the transition matrix element from $M_2\Omega^-(\Xi^{*-})$ to a final $M_i\Xi_i^*$ state.

We have 6 possible reactions:

$$\begin{split} \Omega_c^0 &\to \pi^+ \pi^0 \Xi^{*-} \text{ (with tree level)} \\ \Omega_c^0 &\to \pi^+ \pi^- \Xi^{*0} \\ \Omega_c^0 &\to \pi^0 \pi^+ \Xi^{*-} \text{ (with tree level)} \\ \Omega_c^0 &\to \pi^0 \pi^0 \Xi^{*0} \\ \Omega_c^0 &\to \eta \pi^+ \Xi^{*-} \\ \Omega_c^0 &\to \eta \pi^0 \Xi^{*0} \end{split}$$

where the first meson corresponds to the external one of the weak vertex and the second one to the final state.

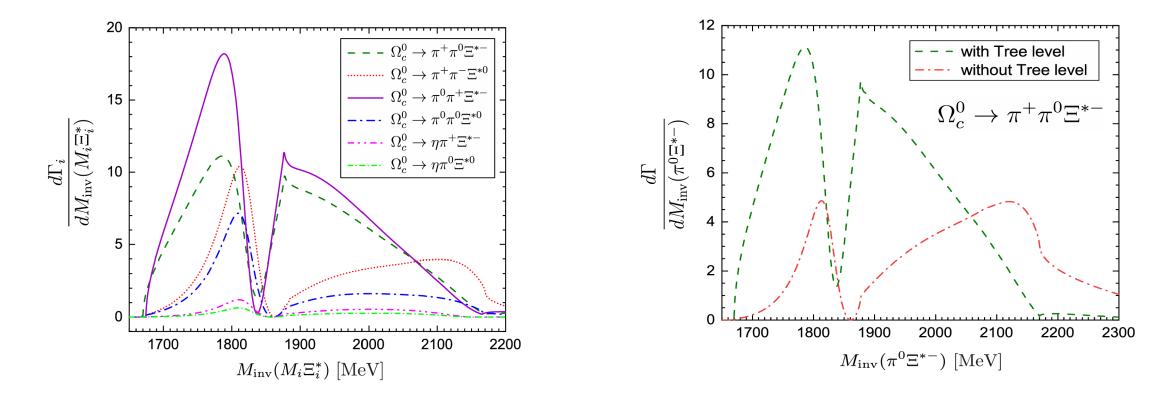
• Reactions testing the two states of $\Xi(1820)$: $\Omega_c^0 \to \pi(\eta)\pi \Xi^*$

The mass distribution for the final $M_i \Xi_i^*$ pair is given by

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}M_{\rm inv}(M_i \Xi_i^*)} = \frac{1}{(2\pi)^3} \frac{1}{4M_{\Omega_c}^2} p_i \tilde{q}_i \sum \sum |t_i|^2 \quad (i = 1 \sim 6),$$

$$t_i = C \langle \Xi^*(3/2^+) | \vec{S}^+ \cdot \vec{p}_i | \Omega_c^0 \rangle \tilde{t}_i, \qquad \sum \sum |t_i|^2 = C^2 \frac{2}{3} \vec{p}_i^2 | \tilde{t}_i |^2.$$

• Reactions testing the two states of $\Xi(1820)$: $\Omega_c^0 \to \pi(\eta)\pi\Xi^*$



 \checkmark The shapes of the mass distributions for the reactions are different from each other.

- ✓ In common: there is a dip in the mass distribution around 1850 MeV, due to the destructive interference of the two resonances.
- ✓ The reactions without tree level contribution, show more clearly the effect of the two $\Xi(1820)$ state.

• Summary

- ✓ The chiral unitary approach for the interaction of pseudoscalar mesons with the baryons of the decuplet predicts two states for the $\Xi(1820)$, one at 1824 MeV with a width of 62 MeV, and a second one at 1875 MeV with a large width of 260 MeV.
- ✓ With the contribution of the two $\Xi(1820)$ states, a fair description of the BESIII data for the $\psi(3686) \rightarrow \overline{\Xi}^+ K^- \Lambda$ decay is obtained, supporting the two-pole structure of the $\Xi(1820)$ state.
- ✓ We propose the reaction $\psi(3686) \rightarrow \overline{\Xi}^+ \overline{K}^0 \Sigma^{*-} \rightarrow \overline{\Xi}^+ \overline{K}^0 \pi^- \Lambda$ to show evidence for the existence of two $\Xi(1820)$ states. The phase space for $\overline{K}^0 \Sigma^{*-}$ production reduces the effect of the lower mass state, magnifying the effect of the higher mass state that shows clearly over the phase space.
- ✓ The $\Omega_c^0 \to \pi^+ \pi^- \Xi^{0*}, \pi^0 \pi^0 \Xi^{0*}, \eta \pi^+ \Xi^{*-}, \eta \pi^0 \Xi^{*0}$ decays, being free of a tree level contribution, show clearly the effect of the two $\Xi(1820)$ state. The lower mass one is clearly seen as a sharp peak in the $\pi \Xi^*$ mass distributions, but the higher mass one manifests itself through an interference with the lower one that leads to a dip in the mass distribution around 1850 MeV.

Thank you for your attention! 16