

2025 年轻强子专题研讨会

Study of the $f_0(1710)$ and $a_0(1710)$ states

Chu-Wen Xiao

Guangxi Normal University

Collaborators: Zhong-Yu Wang, Jing-Yu Yi, Wei Liang Yu-Wen Peng, Wen-Chen Luo, Xiaonu Xiong

```
arXiv: 2306.06395; arXiv: 2402.02539
```


Outline

1. Introduction 2. Study of $D_s^+ \to K_S^0 K^+ \pi^0$ 3. Investigation of $D_s^+ \to K_S^0 K_S^0 \pi^+$ 4. Summary

§1. Introduction

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$ etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q\bar{q})$ similarly gives just 1 and 8. AN SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

CERN LIBRARIES, GENEVA

G.Zweig *) CERN - Geneva

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Molecular nature

PHYSICAL REVIEW LETTERS 126, 152001 (2021)

Explaining the Many Threshold Structures in the Heavy-Quark Hadron Spectrum

Xiang-Kun Dong⁽⁰⁾,^{1,2} Feng-Kun Guo⁽⁰⁾,^{1,2,*} and Bing-Song Zou⁽⁰⁾,^{2,3}

Bing-Song Zou's talk

F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018)
H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Phys. Rept. 639, 1 (2016)
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, Phys. Rept. 873, 1 (2020)

 $f_0(1710)$ was **discovered** about **40 years ago**:

A. Etkin, et al., Phys. Rev. D 25, 1786 (1982)

C. Edwards, et al., Phys. Rev. Lett. 48, 458 (1982)

 $K^*\overline{K}^*$ molecular state: Coupled channel approach

Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ , $f_0(980)$, $a_0(980)$ scalar mesons

J.A. Oller, E. Oset

L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009)

But, its isovector partner $\overline{a_0}(1710)$ were **NOT** found for a long time.....

Recent Findings from BESIII

§2. Study of $D_s^+ \to K_S^0 K^+ \pi^0$

 \overline{s}

 \overline{d}

(1) Quark level: external and internal W-emission mechanisms

External W-emission mechanisms

$$\begin{split} |H^{(1a)}\rangle &= V_P^{(1a)} V_{cs} V_{ud} (u\bar{d} \to \pi^+) |s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle \\ &+ V_P^{*(1a)} V_{cs} V_{ud} (u\bar{d} \to \rho^+) |s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle \\ &= V_P^{(1a)} V_{cs} V_{ud} \pi^+ (M \cdot M)_{33} + V_P^{*(1a)} V_{cs} V_{ud} \rho^+ (M \cdot M)_{33} \\ &= V_P^{(1b)} V_{cs} V_{ud} (s\bar{s} \to \frac{-2}{\sqrt{6}} \eta) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle \\ &+ V_P^{*(1b)} V_{cs} V_{ud} (s\bar{s} \to \phi) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle \\ &= V_P^{(1b)} V_{cs} V_{ud} (s\bar{s} \to \phi) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle \\ &= V_P^{(1b)} V_{cs} V_{ud} \frac{-2}{\sqrt{6}} \eta (M \cdot M)_{12} + V_P^{*(1b)} V_{cs} V_{ud} \phi (M \cdot M)_{12} \end{split}$$

Internal W-emission mechanisms

$$\begin{aligned} |H^{(2a)}\rangle = & V_P^{(2a)} V_{cs} V_{ud} (s\bar{d} \to \bar{K}^0) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle \\ &+ V_P^{*(2a)} V_{cs} V_{ud} (s\bar{d} \to \bar{K}^{*0}) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle \\ = & V_P^{(2a)} V_{cs} V_{ud} \bar{K}^0 (M \cdot M)_{13} + V_P^{*(2a)} V_{cs} V_{ud} \bar{K}^{*0} (M \cdot M)_{13} \end{aligned}$$

$$\begin{aligned} H^{(2b)} \rangle = & V_P^{(2b)} V_{cs} V_{ud} (u\bar{s} \to K^+) |s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle \\ &+ V_P^{*(2b)} V_{cs} V_{ud} (u\bar{s} \to K^{*+}) |s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle \\ = & V_P^{(2b)} V_{cs} V_{ud} K^+ (M \cdot M)_{32} + V_P^{*(2b)} V_{cs} V_{ud} K^{*+} (M \cdot M)_{32} \end{aligned}$$

Hadronization

$$M = \begin{pmatrix} u\bar{u} \ u\bar{d} \ u\bar{s} \\ d\bar{u} \ d\bar{d} \ d\bar{s} \\ s\bar{u} \ s\bar{d} \ s\bar{s} \end{pmatrix} \longrightarrow P = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$

$$\begin{split} |H\rangle = &|H^{(1b)}\rangle + |H^{(2a)}\rangle + |H^{(2b)}\rangle \\ = &\frac{1}{\sqrt{2}} (V_P^{*(1b)'} - V_P^{*(1b)}) V_{cs} V_{ud} \rho^+ \phi \pi^0 + \frac{1}{\sqrt{2}} (V_P^{(2a)} - V_P^{(2b)}) V_{cs} V_{ud} K^+ \bar{K}^0 \pi^0 \\ &+ \frac{1}{\sqrt{2}} (V_P^{*(2a)} - V_P^{*(2b)}) V_{cs} V_{ud} K^{*+} \bar{K}^{*0} \pi^0, \\ = &\frac{1}{\sqrt{2}} V_P^{*'} V_{cs} V_{ud} \rho^+ \phi \pi^0 + \frac{1}{\sqrt{2}} V_P V_{cs} V_{ud} K^+ \bar{K}^0 \pi^0 + \frac{1}{\sqrt{2}} V_P^* V_{cs} V_{ud} K^{*+} \bar{K}^{*0} \pi^0 \end{split}$$

(2) Final state interaction

 K^+

 $ar{K}^0$

 K^+

 \bar{K}^0

 π^0

Coupled Channel Unitary Approach : solving Bethe-Salpeter equations, which take on-shell approximation for the loops.

$$T = V + V G T, T = [1 - V G]^{-1} V$$

$$T = V + P_{p_2} + P_{q_1} + \dots$$
$$T = V + V + P_{p_2} + \dots$$

D. L. Yao, L. Y. Dai, H. Q. Zheng and Z. Y. Zhou, Rept. Prog. Phys. 84, 076201 (2021)

where V matrix (potentials) can be evaluated from the interaction Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438 E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99 J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263 G is a diagonal matrix with the loop functions of each channels:

$$G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{2M_l}{(P-q)^2 - m_{l1}^2 + i\varepsilon} \frac{1}{q^2 - m_{l2}^2 + i\varepsilon}$$

The coupled channel scattering amplitudes **T matrix satisfy the unitary** :

$$\operatorname{Im} T_{ij} = T_{in} \,\sigma_{nn} \,T_{nj}^*$$
$$\sigma_{nn} \equiv \operatorname{Im} G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}}\theta(s - (m_1 + m_2)^2))$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$G_{ll}^{II}(s) = G_{ll}^{I}(s) + i \, \frac{q_{cm}}{4\pi\sqrt{s}}$$

Z. Y. Wang, Y. W. Peng, J. Y. Yi, W. C. Luo and CWX, Phys. Rev. D 107 (2023) 116018.

(3) P-wave state contribution

(4) re	esults	$a_0(171)$	0)+				
150 125 100 75 50 25 0 1 26 0 1 0 1	Total fit $\overline{K}^*(892)^0$ $\overline{K}^*(892)^+$ \overline{S} -wave \overline{I} BESIII data 0 1.2 \overline{I}	1.4 1.6 1.8 $M_{K_{S}^{0}K^{+}}$ [GeV]		Total fi $\overline{K}^*(892)$ $\overline{K}^*(892)$ \overline{I} BESIII \overline{I} BESIII \overline{I} BESIII \overline{I} \overline{I}	$ \begin{array}{c} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tal fit (892) ⁰ (892) ⁺ wave ESIII data
	Parameter	μ	\mathcal{C}_1		\mathcal{C}_2	\mathcal{C}_3	
	Fit	$0.716 \pm 0.013 { m Ge} \ {\cal D}_1 \ 61.65 \pm 2.33$	eV $47518.79 \pm 7523.$ \mathcal{D}_2 40.43 ± 2.95	18 1595 ¢ 1.4	$egin{array}{c} 34 \pm 138.51 \ ar{k}^{*} {}^{(892)^0} \ ar{6} \pm 0.12 \end{array}$	$egin{array}{c} 46454.25\pm 3868.04\ \phi_{K^*(892)^+}\ 1.67\pm 0.15 \end{array}$	
	$a_{K^{*+}\bar{K}^{*0}}$	$= -1.91, a_{\rho^+\omega}$	$= -1.82, \qquad a_{ ho^+\phi} = -$	-2.02, a_{K^+}	$_{\bar{K}^0} = -1.59,$	$a_{\pi^+\eta} = -1.63.$	
		This work	Reference [63]	Reference [26]	Reference [29]	Reference [27]	
	Parameter $a_0(980)$ $a_0(1710)$	$\mu = 0.716 \qquad q \\ 1.0419 + 0.0345i \qquad 1.0023 \\ 1.7936 + 0.0094i \qquad \qquad$	$q_{\max} = 0.931, q_{\max} = 1.08$ 9 + 0.0567 <i>i</i> , 0.9745 + 0.0573 <i>i</i> 	$\mu = 1.00$ 1.780 - 0.066i	$q_{\max} = 1.00$ 1.72 - 0.10i	$q_{\max} = 1.00, g_1 = 4.596$ $1.76 \pm 0.03i$	

Partial decay widths

Г	Г				
$1 a_0(980)^+ \rightarrow K^+ \bar{K}^0$	$1 \ a_0(980)^+ \rightarrow \pi^+ \eta$		$1 \int E_{\text{max}}$	$-q_{cmi}$	
28.38 MeV	43.60 MeV	$\Gamma_{R \rightarrow}$	$d_i = -\frac{16\pi^2}{16\pi^2} \int_F dd$	$\frac{1}{E^2} 4M_R \text{Im}T_{ii}$	
			J L min	_	
$\Gamma_{a_0(1710)^+ \to \rho^+ \omega}$ $\Gamma_{a_0(1710)}$	$\Gamma_{a_0(1710)^+}$	$\Gamma_{R \to j} =$	$-\frac{1}{16\pi^2}\int_{E}^{E_{\text{max}}} dE \frac{q_c}{E}$	$\frac{mj}{2} 4M_R \frac{(\mathrm{Im}T_{ji})^2}{\mathrm{Im}T_{ii}}$	
19.65 MeV 0.54	MeV 0.05 M	eV	J D min	11	
Eur. Phys. J. C (2022) 82:509 https://doi.org/10.1140/epjc/s10052-022-10460-4	The European Physical Journal C	$\overline{\Gamma(K^*\bar{K}^*\to\rho\omega)}$	$\Gamma(K^*\bar{K}^*\to K\bar{K})$	$\Gamma(K^*\bar{K}^*\to\pi\eta)$	
Regular Article - Theoretical Physics		61.0 MeV	74.4 MeV	66.9 MeV	
Two dynamical generated <i>a</i> ₀ resonant vector mesons	$\Gamma(\rho\phi o ho\omega)$	$\Gamma(\rho\phi \to K\bar{K})$	$\Gamma(\rho\phi o \pi\eta)$		
Zheng-Li Wang ^{1,2,a} , Bing-Song Zou ^{1,2,3,b}		60.8 MeV	74.2 MeV	66.6 MeV	

PHYSICAL REVIEW D 105, 114014 (2022)

Newly observed $a_0(1817)$ as the scaling point of constructing the scalar meson spectroscopy

Dan Guo⁽⁰⁾,^{1,2,*} Wei Chen⁽⁰⁾,^{4,†} Hua-Xing Chen,^{5,‡} Xiang Liu⁽⁰⁾,^{1,2,3,7,§} and Shi-Lin Zhu⁽⁰⁾,^{4,†}

Branching ratios

 $\frac{\mathcal{B}(D_s^+ \to K^*(892)^+ K_S^0, K^*(892)^+ \to K^+ \pi^0)}{\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0)} = 0.40^{+0.002}_{-0.003}$ $\frac{\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to K_S^0 K^+)}{\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0)} = 0.53^{+0.06}_{-0.08},$ $\frac{\mathcal{B}(D_s^+ \to a_0(1710)^+ \pi^0, a_0(1710)^+ \to K_S^0 K^+)}{\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0)} = 0.41^{+0.04}_{-0.05}$ $\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0) = (4.77 \pm 0.38 \pm 0.32) \times 10^{-3}$ Our predictions $\mathcal{B}(D_s^+ \to K^*(892)^+ K_S^0, K^*(892)^+ \to K^+ \pi^0) = (1.91 \pm 0.20^{+0.01}_{-0.01}) \times 10^{-3}$ $\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to K_s^0 K^+) = (2.53 \pm 0.26^{+0.27}_{-0.38}) \times 10^{-3}$ $\mathcal{B}(D_s^+ \to a_0(1710)^+ \pi^0, a_0(1710)^+ \to K_s^0 K^+) = (1.94 \pm 0.20^{+0.18}_{-0.24}) \times 10^{-3}$ **BE/SIII** measurements

 $\begin{aligned} \mathcal{B}(D_s^+ \to K^*(892)^+ K_S^0, K^*(892)^+ \to K^+ \pi^0) &= (2.03 \pm 0.26 \pm 0.20) \times 10^{-3} \\ \mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to K_S^0 K^+) &= (1.12 \pm 0.25 \pm 0.27) \times 10^{-3} \\ \mathcal{B}(D_s^+ \to a_0(1710)^+ \pi^0, a_0(1710)^+ \to K_S^0 K^+) &= (3.44 \pm 0.52 \pm 0.32) \times 10^{-3} \end{aligned}$

§3. Investigation of $D_s^+ \rightarrow K_S^0 K_S^0 \pi^+$

Eight channels contributed

Also P-wave resonance contribution

									and and
	Parameters μ			C_1		C_2	C_3		
	\mathbf{Fit}	0.648 ± 0.648	.01 GeV 864	40.90 ± 1115.80	2980.'	71 ± 638.37	-1902.86 ± 29	3.27	1932
	Parameters	C_4		C_5		C_6	C_7		
	Fit	56906.35 \pm	10869.67 -134	433.15 ± 5017.7	6 -58284.	$.22 \pm 7319.04$ 1	02835.76 ± 233	333.56	
	Parameters	C_8	3	D	α_{j}	$K^{*}(892)^{+}$	$\chi^2/dof.$		
	Fit	$202807.71~\pm$	30750.45	54.8 ± 2.0	0.00	024 ± 4.30	2.55		
	Th	is work	Ref. [64]	Ref. [96]	Ref. [43]	Ref. [62]	Ref.	[44]
Paran	meters μ =	= 0.648	$\mu=0.716$	$q_{max} = 0$	0.931	$\mu = 1.0$	$q_{max} = 1.0$	q_{max} =	= 1.0
$a_0(9)$	(980) 1.059	8 + 0.024i	1.0419 + 0.03	$345i \ 1.0029 + 0$	0.0567i	•••			•
$f_0(9)$	980) 0.991	2 + 0.003i		0.9912 + 0	0.0135i				•
$a_0(1$	710) 1.7981	1 + 0.0018i	1.7936 + 0.00)94 i	1		1.72 - 0.010i	$1.76 \pm$	0.03i
$f_{0}(1$	710) 1.7676	6 + 0.0093i			1				•
		0.01000000000							

Consistent with our previous results in $D_s^+ \to K_S^0 K^+ \pi^0$

Our results

$$\mathcal{B}(D_s^+ \to S(980)\pi^+, S(980) \to K_S^0 K_S^0) = (0.36 \pm 0.04^{+0.10}_{-0.06}) \times 10^{-3}$$
$$\mathcal{B}(D_s^+ \to S(1710)\pi^+, S(1710) \to K_S^0 K_S^0) = (1.66 \pm 0.17^{+1.38}_{-0.89}) \times 10^{-3}$$

BESIII measurements

$$B(D_{s}^{+} \to K^{*} (892)K_{s}^{0} \to K_{s}^{0}K_{s}^{0}\pi^{+})$$

= (3.0 ± 0.3 ± 0.1) × 10⁻³;
$$B(D_{s}^{+} \to S(1710)\pi^{+} \to K_{s}^{0}K_{s}^{0}\pi^{+})$$

= (3.1 ± 0.3 ± 0.1) × 10⁻³.

Y. W. Peng, W. Liang, X. Xiong and **CWX**, Phys. Rev. D 110 (2024) 036013.

L. R. Dai, E. Oset and L. S. Geng, Eur. Phys. J. C 82, 225 (2022) X. Zhu, D. M. Li, E. Wang, L. S. Geng and J. J. Xie, Phys. Rev. D 105, 116010 (2022)

$$T_{K^{+}K^{-}\to K^{0}\bar{K}^{0}} = \frac{1}{2} \left(T_{K\bar{K}\to K\bar{K}}^{I=0} - T_{K\bar{K}\to K\bar{K}}^{I=1} \right)$$
$$T_{K^{0}\bar{K}^{0}\to K^{0}\bar{K}^{0}} = \frac{1}{2} \left(T_{K\bar{K}\to K\bar{K}}^{I=0} + T_{K\bar{K}\to K\bar{K}}^{I=1} \right)$$

 $C_1 \neq C_2$ and $C_4 \neq C_5$

§4. Summary

- We use the final state interaction formalism to investigate the Ds three-body weak decays
 - In the final state interaction, $f_0 / a_0 (1710)$ and/or $f_0 / a_0 (980)$ generated (molecular nature)
 - Related branching ratios are evaluated, some of which are consistent with the experiments.

Hope future experiments and theories bring more clarifications on these issues.....

Jul 11 – 15, 2025 Asia/Shanghai timezone

会议计划于2025年7月11日至15日在桂林市桂林宾馆召开, 其中11日报到注册。会议统一安排食宿,费用自理。会 议收取注册费,教师及博士后1500元/人,学生1000元/人。

会议网址: <u>https://indico.ihep.ac.cn/event/24044/</u>, 注册截止时间为6月20日。

Thanks for your attention!

感谢大家的聆听!