

Highlight on CPV test of hyperon at BESII

轻强子专题研讨会-安阳

张剑宇

University of Chinese Academy of Sciences, Beijing, China

Outline • CP tests in hyperon decays

Recent results from BESIII

Hyperon CP test in future plans

Summary and outlooks

CP tests in hyperon decays

轻强子研讨会-安

2025/05/11

Roadmap of CP violation in flavored hadrons

≻All of them are consistent with CKM theory in the Standard Model but too small to explain the matter-dominant world.

To generate the baryon asymmetry world, there should be a non-SM CPV source?

2025/05/11

Two conditions for a measurable CP violation

1) a*CP*-violating phase:

2) two or more interfering paths to the same final state

For spin-1/2 hyperon decay to spin-1/2 baryon and a spin-0 meson, the relation between parent (P_Y) and daughter (P_d) polarization vectors is:

$$\mathbf{P}_{d} = \frac{\left(\alpha_{Y} + \mathbf{P}_{Y} \cdot \hat{\mathbf{p}}_{d}\right) \hat{\mathbf{p}}_{d} + \beta_{Y} \mathbf{P}_{Y} \times \hat{\mathbf{p}}_{d} + \gamma_{Y} \hat{\mathbf{p}}_{d} \times \left(\mathbf{P}_{Y} \times \hat{\mathbf{p}}_{d}\right)}{\left(1 + \alpha_{Y} \mathbf{P}_{Y} \cdot \hat{\mathbf{p}}_{d}\right)}$$

And the Lee-Yang parameters are defined by S and P wave:

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \qquad P_Y \text{ or } P_d$$

$$\beta_Y = \frac{2 \operatorname{Im} (S^* P)}{|S|^2 + |P|^2},$$
Can be measured if
$$P_Y \text{ and } P_d$$

$$\gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

$$P_Y \text{ and } P_d$$

$$\alpha = \frac{2Re(S*P)}{|S|^2 + |P|^2},$$

Phys. Rev. 1

 $\beta = \frac{2Im(S*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} sin\phi$

CP observable in hyperon decay

John F. Donoghue Xiao-Gang He Sandip Pakvasa

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the CP-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and left-right-symmetric models of CP nonconservation.

PRD 34,833 1986

Not sensitive to CPV

Polarization of decayed baryon needs to be measured

Decay width difference

Decay parameter difference

Decay parameter difference

 Ξ^-, Ξ^0, Ω^- cascade decay

$$\Delta = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}} \approx \sqrt{2} \frac{T_{\frac{3}{2}}}{T_{\frac{1}{2}}} \sin \Delta_s \sin \phi_{CP}$$
$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \tan \Delta_s \tan \phi_{CP}$$

T

$$B = \frac{\Gamma\beta + \Gamma\beta}{\Gamma\alpha - \overline{\Gamma}\overline{\alpha}} \approx \tan\phi_{CP}$$

Λ decay -5. 4×10⁻⁷

SM Prediction of

 -0.5×10^{-4}

 3.0×10^{-3}

2025/05/11

BESIII: a hyperon factory

With 10 billion J/ψ and 2.7 billion $\psi(3686)$ collected at BESIII, ~10⁷ entangled hyperon pairs can be produced, which enables precise studies of the hyperon physics.

Front. Phys. 12(5), 121301 (2017)				
Decay mode	$B(\times 10^{-3})$	$N_B(imes 10^6)$		
$J/\psi ightarrow \Lambda \overline{\Lambda}$	1.89 ± 0.09	~18.9		
$J/\psi\to\Sigma^0\bar\Sigma^0$	1.172 ± 0.032	~11.7		
$J/\psi ightarrow \Sigma^+ \overline{\Sigma}^-$	1.07 ± 0.04	~10.7		
$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$	1.17 ± 0.04	~11.7		
$J/\psi ightarrow \Xi^- \overline{\Xi}^+$	0.97 ± 0.08	~9.7		
$\psi(2S)\to \Omega^-\overline{\Omega}{}^+$	0.057 ± 0.003	~0.17		

More $\psi(3686)$ data will be taken after the upgrade of BEPCII and BESIII inner tracker.

Polarized hyperon pairs produced in e^+e^- collisions

• The non-zero $\Delta \Phi$ represents the transverse polarization.

$$P_{y}(\cos\theta) = \frac{\sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \cos\theta \sin\theta}{1 + \alpha_{\psi} \cos^{2}\theta}$$

• The form factors G_E, G_M construct the production parameters:

$$\begin{split} \alpha_{\psi} &= \frac{s|G_M|^2 - 4M_{\Xi}^2|G_E|^2}{s|G_M|^2 - 4M_{\Xi}^2|G_E|^2},\\ \Delta\Phi &= \arg\left(\frac{G_E}{G_M}\right), \end{split}$$

• Angular distribution

 B_i CMS

Recent results from BESIII

$$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \ \Lambda(\overline{\Lambda}) \rightarrow p\pi$$

Differential cross-section of this process:

If $\sin\Delta\Phi \neq 0$, Λ is transverse polarized.

Nuovo Cim. A 109, 241 (1996) Phys. Rev.185 D 75, 074026 (2007) Nucl. Phys. A190 771, 169 (2006) Phys. Lett. B 772, 16(2017)

Independent measurement of α_{-}, α_{+}

Test CP symmetry

$$e^+e^- \to J/\psi \to \Lambda\overline{\Lambda}, \Lambda(\overline{\Lambda}) \to p\pi$$

BESIII has publish 2 works based on 1.3 billion and 10 billion J/ψ data sample:

[1] 1.3 billion: Nature Phys.15(2019)631

[2] 10 billion: Phys.Rev.Lett. 129 (2022) 13, 131801

- Most precise values for Λ decay parameter
- One of the most precise *CP* test in the hyperon sector: $A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -0.0025 \pm 0.0046 \pm 0.0011$

Standard mode prediction : A_{CP}~ 10⁻⁴ (PRD 34, 833 (1986))

Par.	BESIII 10 billion [2]	BESIII 1.3 billion [1]
$\overline{lpha_{J/\psi}}$	$0.4748 \pm 0.0022 \pm 0.0031$	$0.461 \pm 0.006 \pm 0.007$
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.0066$	$0.740 \pm 0.010 \pm 0.009$
lpha	$0.7519 \pm 0.0036 \pm 0.0024$	$0.750 \pm 0.009 \pm 0.004$
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0030$	$-0.758 \pm 0.010 \pm 0.007$
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0012$	$0.006 \pm 0.012 \pm 0.007$
$lpha_{ m avg}$	$0.7542 \pm 0.0010 \pm 0.0024$	-

$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$$

• The 9 kinematical variables – 9 dimension PHSP

 $\boldsymbol{\xi} = (\theta_{\Xi}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{\overline{\Lambda}}, \phi_{\overline{\Lambda}}, \theta_{p}, \phi_{p}, \theta_{\overline{p}}, \phi_{\overline{p}})$

• The 8 free parameters

 $\boldsymbol{\omega} = (\boldsymbol{\alpha}_{\boldsymbol{\psi}}, \boldsymbol{\Delta}\boldsymbol{\Phi}, \boldsymbol{\alpha}_{\Xi}, \boldsymbol{\phi}_{\Xi}, \boldsymbol{\alpha}_{\overline{\Xi}}, \boldsymbol{\phi}_{\overline{\Xi}}, \boldsymbol{\alpha}_{\Lambda}, \boldsymbol{\alpha}_{\overline{\Lambda}})$

 $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\Xi^+$

Parameter	This work	Previous result
$\overline{a_{\psi}}$	0.586±0.012±0.010	0.58±0.04±0.08 [1]
ΔΦ	1.213±0.046±0.016 rad	-
a=	-0.376±0.007±0.003	-0.401±0.010 [2]
ϕ_{Ξ}	0.011±0.019±0.009rad	-0.037±0.014 rad [2]
ā _Ξ	0.371±0.007±0.002	_
$\overline{\phi_{\Xi}}$	-0.021±0.019±0.007rad	_
a _A	0.757±0.011±0.008	0.750±0.009±0.004 [3
\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007 [3
$\xi_{P} - \xi_{S}$	(1.2±3.4±0.8)×10 ⁻² rad	-
$\delta_P - \delta_S$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10 ⁻² rad [4]
A ^Ξ _{CP}	(6±13±6)×10 ⁻³	_
$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	_
A^A	(-4±12±9)×10 ⁻³	(-6±12±7)×10 ⁻³ [3]
$\langle \phi_{\Xi} \rangle$	0.016±0.014±0.007rad	

4. Phys. Rev. Lett. 93, 011802 (2004)

2025/05/11

 $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\Xi^+$

- \checkmark First measurement of Ξ polarization
- ✓ First determination of entangled $\Xi \overline{\Xi}$ decay parameters
- ✓ Independent measurement of the Λ decay parameters: in agreement with previous BESIII results
- ✓ First measurement of weak phase difference
- $(\xi_P \xi_S)_{SM} = (-2.1 \pm 1.7) \times 10^{-4}$ rad

Phys. Rev. D 105, 116022 (2022)

✓ First direct CP tests for Ξ hyperon

Parameter	This work	Previous result
a_{ψ}	0.586±0.012±0.010	0.58±0.04±0.08 [1]
ΔΦ	1.213±0.046±0.016 rad	_
a=	-0.376±0.007±0.003	-0.401±0.010 [2]
ϕ_{Ξ}	0.011±0.019±0.009rad	-0.037±0.014rad [2]
ā _Ξ	0.371±0.007±0.002	_
$\overline{\phi_{_{\Xi}}}$	-0.021±0.019±0.007rad	_
a _A	0.757±0.011±0.008	0.750±0.009±0.004 [3
\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007 [3
$\xi_P - \xi_S$	(1.2±3.4±0.8)×10 ⁻² rad	_
$\delta_{P} - \delta_{S}$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10 ⁻² rad [4]
A ^Ξ _{CP}	(6±13±6)×10 ⁻³	_
$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	_
A^A	(-4±12±9)×10 ⁻³	(-6±12±7)×10 ⁻³ [3]
$\overline{\langle \phi_{\Xi} \rangle}$	0.016±0.014±0.007rad	

Polarization behavior in different hyperon pair productions

2025/05/11

··· Phase space Difference -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 cosθ₅₊ $\Delta \Phi = (-0.277 + 0.004 + 0.004) rad$ $A_{CP} = -0.080 \pm 0.052 \pm 0.028$ $\psi(2S) \rightarrow \Xi^- \overline{\Xi}^+$

arXiv:2304.14655

Summary of BESIII achievement on hyperon decay

Hyperon CP test in future plans

轻强子研讨会

Electric Dipole Moment

µ: magnetic dipole momentd: electric dipole momentS: particle spin

$$\mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} - \boldsymbol{\delta} \cdot \mathbf{E} \stackrel{P}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\delta} \cdot \mathbf{E}$$
$$\mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} - \boldsymbol{\delta} \cdot \mathbf{E} \stackrel{T}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\delta} \cdot \mathbf{E}$$

Non-zero EDM will violate P and T symmetry: T violation \leftrightarrow CP violation, if CPT holds.

Fhe contribution of the Standard Model to EDM is very small:
 ➤ CKM: highly suppressed by loop level (≥ 3) interaction
 ➤ QCD θ
 term: main SM contributors to the EDM, θ

 Imited by neutron EDM:

 $d_n < 1.6 \times 10^{-26} \ ecm$

$$\mathcal{L}_{\text{CPV}} = \mathcal{L}_{\text{CKM}} + \mathcal{L}_{\overline{\theta}} + \mathcal{L}_{\text{BSM}}^{\text{eff}}$$

Very sensitive to BSM physics, large windows of opportunity for observing New Physics!

Map of EDM

The identification of the nature of the fundamental CP-violating mechanisms requires the study of EDMs in various systems

EDM Status

Only Λ hyperon has been measured with a large uncertainty!

2025/05/11

What can BESIII / STCF do for EDM?

What can BESIII / STCF do for EDM?

• Direct approach: spin procession 难以用来测量短寿命粒子的EDM

$$\begin{split} \frac{d\mathbf{s}}{dt} &= \mathbf{s} \times \mathbf{\Omega} \\ \mathbf{\Omega} &= \mathbf{\Omega}_{\text{MDM}} + \mathbf{\Omega}_{\text{EDM}} + \mathbf{\Omega}_{\text{TH}} \\ \mathbf{\Omega}_{\text{MDM}} &= \underbrace{\frac{g\mu_B}{\hbar} \left(\mathbf{B} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{E} \right)}_{\boldsymbol{\Omega}_{\text{EDM}}} \\ & \boldsymbol{\Omega}_{\text{EDM}} &= \underbrace{\frac{d\mu_B}{\hbar} \left(\mathbf{E} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{E}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{B} \right)}_{\end{split}$$

• Indirect approach: time-like dipole form factors $(q^2 \neq 0)$

$$L_{\text{dipole}} = i \frac{d_{\Lambda}}{2} \bar{\Lambda} \sigma_{\mu\nu} \gamma_5 \Lambda F^{\mu\nu}$$
$$L_{c-\Lambda} = -\frac{2}{3M^2} e d_{\Lambda} (p_1^{\mu} - p_2^{\mu}) \bar{c} \gamma_{\mu} c \bar{\Lambda} i \gamma_5 \Lambda$$

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744 X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Dynamics in $J/\psi \rightarrow B\overline{B}$

Detailed dynamics in J/ψ decay to hyperon pair, have been studied: X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

$$\mathcal{A} = \epsilon_{\mu}(\lambda)\bar{u}(\lambda_{1})\left(\boldsymbol{F}_{\boldsymbol{V}}\gamma^{\mu} + \frac{i}{2M_{\Lambda}}\sigma^{\mu\nu}q_{\nu}\boldsymbol{H}_{\boldsymbol{\sigma}} + \gamma^{\mu}\gamma^{5}\boldsymbol{F}_{\boldsymbol{A}} + \sigma^{\mu\nu}\gamma^{5}q_{\nu}\boldsymbol{H}_{\boldsymbol{T}}\right)\nu(\lambda_{2})$$

Primarily from Z-boson exchange between $c\overline{c}$ and light quark pairs

Related to weak mixing angle in SM

$$F_A \approx -\frac{1}{6} Dg_V \frac{g^2}{4\cos^2 \theta_W^{\text{eff}}} \frac{1 - 8\sin^2 \theta_W^{\text{eff}}/3}{m_Z^2} \approx -1.07 \times 10^{-6}$$

X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Several CPV sources contributed to H_T

Take hyperon EDM as the major source for H_T

$$H_T = \frac{2e}{3M_{J/\psi}^2} g_V d_B \qquad (q = M_{J/\psi})$$

Neglect q dependence, d_B for hyperon EDM

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744

```
X.G.He, J.P. Ma,
Phys.Lett.B 839(2023)137834
```

Angular formular based on helicity amplitude are developed:

J. Fu, H.B. Li, J. Wang, F. Yu, and J. Zhang, PhysRevD.108.L091301

$$R(\lambda_1, \lambda_2; \lambda_1', \lambda_2') \propto \sum_{m,m'} \rho_{m,m'd_{m,\lambda_1-\lambda_2}^{j=1}(\theta)d_{m',\lambda_1'-\lambda_2'}^{j=1}(\theta)\mathcal{M}_{\lambda_1,\lambda_2}\mathcal{M}_{\lambda_1',\lambda_2'}^*\delta_{m,m'}$$

Total angular distribution of J/ψ to spin-1/2 baryon pair:

$$\begin{split} & \int /\psi \to B\bar{B}, B = \Lambda^{0}, \Sigma^{-}, \Sigma^{+} \\ & \frac{d\sigma}{d\Omega_{k}d\Omega_{p}d\Omega_{\bar{p}}} = N \sum_{[\lambda]} R(\lambda_{1}, \lambda_{2}; \lambda_{1}', \lambda_{2}') D_{\lambda_{1},\lambda_{p}}^{j=1/2}(\theta_{1}, \phi_{1}) D_{\lambda_{1}',\lambda_{p}}^{*j=1/2}(\theta_{1}, \phi_{1}) \left| h_{\lambda_{p}} \right|^{2} D_{\lambda_{2},\lambda_{\bar{p}}}^{j=1/2}(\theta_{2}, \phi_{2}) D_{\lambda_{2}',\lambda_{\bar{p}}}^{*j=1/2}(\theta_{2}, \phi_{2}) \left| h_{\lambda_{\bar{p}}} \right|^{2} \\ & \gg J/\psi \to B\bar{B}, B = \Xi^{0}, \Xi^{-} \\ & \frac{d\sigma}{d\Omega_{k}d\Omega_{\Lambda}d\Omega_{\bar{\Lambda}}d\Omega_{p}d\Omega_{\bar{p}}} = N \sum_{[\lambda]} R(\lambda_{1}, \lambda_{2}; \lambda_{1}', \lambda_{2}') D_{\lambda_{1},\lambda_{\Lambda}}^{*j=1/2}(\theta_{1}, \phi_{1}) D_{\lambda_{1}',\lambda_{\Lambda}'}^{j=1/2}(\theta_{1}, \phi_{1}) H_{\lambda_{\Lambda}} H_{\lambda_{\Lambda}'}^{*} D_{\lambda_{2},\lambda_{\bar{\Lambda}}}^{*j=1/2}(\theta_{2}, \phi_{2}) \\ & D_{\lambda_{2}',\lambda_{\Lambda}'\bar{a}}^{j=1/2}(\theta_{2}, \phi_{2}) \mathcal{H}_{\lambda_{\bar{\Lambda}}} \mathcal{H}_{\lambda_{\bar{\Lambda}}}^{*} D_{\lambda_{\Lambda,\lambda_{p}}}^{*j=1/2}(\theta_{3}, \phi_{3}) D_{\lambda_{\Lambda}'\lambda_{\bar{\Lambda}}}^{*j=1/2}(\theta_{3}, \phi_{3}) \left| h_{\lambda_{p}} \right|^{2} D_{\lambda_{\bar{\Lambda}},\lambda_{\bar{p}}}^{*j=1/2}(\theta_{4}, \phi_{4}) D_{\lambda_{\Lambda}'\bar{\lambda},\lambda_{\bar{p}}}^{j=1/2}(\theta_{4}, \phi_{4}) \left| h_{\lambda_{\bar{p}}} \right|^{2} \end{split}$$

2025/05/11

Sensitivity of hyperon EDM measurements

(a)Sensitivity of $Re(d_B)$ and $Im(d_B)$

E

 Σ^+

 Ξ^0

SM:
$$\sim 10^{-26} \, e \, \text{cm}$$

BESIII: milestone for hyperon EDM measurement $\Lambda 10^{-19}$ e cm (FermiLab 10^{-16} e cm)

> first achievement for $\Sigma^+, \Xi^$ and Ξ^0 at level of $10^{-19}e$ cm

a litmus test for new physics

STCF: improved by 2 order of magnitude

Λ

Sensitivity of F_A and $\sin^2 \theta_w^{eff}$ measurements

⁽c)Sensitivity of $|F_A|$ and $\sin^2 \theta_W^{\text{eff}}$

SM:
$$F_A \sim 10^{-6}$$

 $\sin^2 \theta_W^{\text{eff}} \sim 0.235$

STCF:

Weak mixing angle at $Q = M_{J/\psi}$ can be determined at the level of 8×10^{-3}

Sensitivity of $\sin^2 \theta_w^{eff}$ by simultaneous fit

Weak mixing angle shared by F_A and P_L

Sensitivity improved at the level 5×10^{-3}

Figure 1

(a) $\sin^2 \theta_W(\mu)_{\overline{\text{MS}}}$ (29) with an updated atomic parity violation (APV) result. (b) $\sin^2 \theta_W(Q^2)$, a one-loop calculation dominated by $\gamma - Z^0$ mixing (52). The red and green curves represent the boson and fermion contributions, respectively.

K.S.Kumar et al, Ann.Rev.Nucl.Part.Sci. 63 (2013) 237-267

Summary and Outlooks

• Polarization plays an important role in hyperon physics (at BESIII):

- Precision measurements of hyperon decay parameters, polarization and CP:
 - complementary to CPV studies with Kaons

2025/05/1

- BESIII has already rewritten the PDG book for Λ and Ξ decays
- results of Σ^{\pm} , Ξ with 10 billion J/ψ will be coming soon
- Hyperon electric dipole moments measurements:
 - The prospect sensitivity of Λ EDM at BESIII is 1000 times higher than the world's best measurement under the same statistical condition.
 - BESIII has the opportunity of first measurements of the EDM of Σ^+ , Ξ^- , Ξ^0 hyperons , and the sensitivity are at the order of 10^{-19} (BESIII) and 10^{-20} (STCF).

31

www.thank you.com

12

经强子研讨会-安阳

2025/05/11

EM form-factors and Helicity Amplitudes

Phys.Rev.D99,056008

$$h_{2} \equiv A_{1/2,-1/2} = A_{-1/2,1/2} = \sqrt{1 + \alpha_{\psi}} e^{-i\Delta\Phi}$$

$$h_{1} \equiv A_{1/2,1/2} = A_{-1/2,-1/2} = \sqrt{1 - \alpha_{\psi}} / \sqrt{2}$$

$$h_{2} = \frac{\sqrt{2s}}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{M}$$

$$h_{2} = \frac{\sqrt{2s}}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{M}$$

$$h_{1} = \frac{2M}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{E}$$

$$\frac{G_{E}}{G_{M}} = e^{i\Delta\Phi} \left| \frac{G_{E}}{G_{M}} \right|$$

where s is the square of $p_B + p_{\bar{B}}$ and M is the mass of $B(\bar{B})$.

CPV observables in $\Xi^- \rightarrow \Lambda \pi$ decay

Constraints from Kaon decays

He & Valencia PRD 52, 5257

CPV measurement in Kaon system strongly constrains NP in S-waves, but no Pwaves. Thus, searches of CPV in hyperon are complementary to those with Kaons.