Light QCD exotics

刘北江

中国科学院高能物理研究所

2025年轻强子专题研讨会 河南安阳 2025年5月8日-12日

Mysterious gluons

- How does QCD give rise to hadrons?
 - What is the origin of confinement?
 - How is the mass generated in QCD?
- Role of gluons?
- Key thing to search for: hadrons explicitly manifest the gluonic degrees of freedom
 - Glueballs and hybrids

Eur.Phys.J.A 60 (2024), 173

PRD 73 014516 (2006)

Glueballs

- Glueballs are the most direct prediction of QCD
 - Color singlets emerge as a consequence of the gluon self-interactions
 - Unique particles formed by gauge bosons (force)
- Essential for understanding of confinement and mass dynamical generation
- Theoretical predictions from lattice QCD and QCD-inspired models mostly consistent

• Light-mass glueballs: $J^{PC} = 0^{++}, 2^{++}, 0^{-+}$

non- $q\overline{q}$ nature with ordinary quantum numbers is difficult to establish

Yang-Mills glueballs on lattice (quenched and unquenched)

Glueball hunting for over 40 years

• Supernumerary states w.r.t. quark model

- A priori, mixed with nearby $q\overline{q}$
- Assignment of some $q\overline{q}$ multiplets is difficult
- Detailed and accurate information about couplings to production and decay channels is required
- Strongly produced in **gluon-rich processes**
- Decay: gluon is flavor-blind
 - SU(3)_{flavor} symmetry expected, but differing quark masses leads exceptions
 - No rigorous predictions on decay patterns
 - Could be analogy to OZI suppressed decays of charmonium, as they all decay via gluons [PLB 380 189(1996), Commu. Theor. Phys. 24.373(1995)]

[Phys. Rept. 454 1]

Charmonium decays:

BESIII, MRKIII...

pp double-Pomeron exchange:

WA102, GAMS...

$p\overline{p}$ annihilation:

Crystal barrel, OBELIX...

Some glueball candidates in the past

- The first glueball candidate, $\iota(1440)$, observed in J/ ψ radiative decays in 1980s
- Scalar candidates f₀(1370), f₀(1500), f₀(1710) (MarkII in1980s, Crystal Barrel in 1990s)

• • •

- Narrow tensor glueball candidate $\xi(2230)$ (MarkIII in 1980s/BESI in 1990s)
 - Not confirmed by CLEO, BESII nor BESIII with much higher statistics

And,

• Odderon (odd C-parity) from D0 and TOTEM (2021)

"The Physics of Glueballs" Mathieu, Kochelev, and Vento, 2009 "The Status of Glueballs" Ochs, 2013 "Glueballs as the Ithaca of meson spectroscopy: From simple theory to challenging detection" Llanes-Estrada, 2021 "The Experimental Status of Glueballs" Crede and C. A.Meyer, 2009 **Beijing Electron Positron Collider (BEPCII)**

Charmonium decays provide an ideal lab for Gluonic Excitations

- Gluon-rich process
- Well defined initial and final states
 - Kinematic constraints
 - Isospin and J^{PC} filters
- Clean high statistics data samples: $10 \times 10^9 \text{ J/}\psi$ and $2.7 \times 10^9 \psi'$ @ BESIII
 - High cross sections of $e^+e^- \to J/\psi, ~\psi'$
 - Low background

Scalar glueball candidate

- Supernumerary scalars suggest additional degrees of freedom
 - However, mixing scenarios are controversial
- Measured $B(J/\psi \rightarrow \gamma f_0(1710))$ is **x10 larger** than $f_0(1500)$

BESIII [PRD 87 092009, PRD 92 052003, PRD 98 072003]

- LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ [PRL 110, 091601(2013)] > BESIII: $f_0(1710)$ largely overlays with the scalar glueball
- Identification of scalar glueball with coupled-channel analyses based on BESIII data

[PLB 816, 136227 (2021), EPJC 82, 80 (2022), PLB 826, 136906 (2022)]

• Further more, suppression of $f_0(1710) \rightarrow \eta \eta'$ supports $f_0(1710)$ has a large overlap with glueball BESIII [PRD 106 072012(2022)]

Where is the 0⁻⁺ glueball

- Pseudoscalar sector, a promising window
 - Only $\eta,\,\eta'$ (& radial excitations) from quark model
- Mass
 - LQCD: 0⁻⁺ glueball (2.3~2.6 GeV)
- Production
 - LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$, at the same level as 0⁻⁺ mesons [PRD.100.054511(2019)]
- Decays
 - Possible guidance: OZI suppressed decays of η_c
 - 3 pseudoscalar final state is a good place to look for $(0^{-+} \rightarrow 2P \text{ is forbidden})$

11

 Γ_2

Γ₃₄

35

- No dominant decay
- Flavor symmetric

A glueball-like state X(2370)

- Discovered by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi$ in 2011
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi$, $\gamma \eta' KK$
 - Not seen in $J/\psi \rightarrow \gamma \eta' \eta \eta$ [BESIII PRD 103 012009 (2021)], $J/\psi \rightarrow$ $\gamma\gamma\phi$ [BESIII PRD.111.052011(2025)]. Upper limits of BF are well consistent with predictions of 0^{-+} glueball
- Mass consistent with LQCD prediction for 0⁻⁺ glueball
- Spin-parity determined to be 0⁻⁺ BESIII PRL 132, 181901(2024)

 $J/\psi \rightarrow \gamma \eta' \pi \pi$

X(2370) observed in the gluon-rich J/ ψ radiative decays

- A first-time determination of $J^{PC} = 0^{-+}$
- Mass and production rate consistent with LQCD
- Decay modes $X(2370) \rightarrow \eta' \pi \pi, \eta' KK, K_S^0 K_S^0 \eta, K_S^0 K_S^0 \pi^0, \eta \pi^0 \pi^0, a_0^0 (980) \pi^0$, in analog to η_c ($\eta(2320) \rightarrow \eta\eta\eta, \eta\pi\pi$ [PL B496 145(2000)] could be the same state).

Consistent with 0^{-+} glueball

Light hadrons with exotic quantum numbers

- Finding unambiguous signature for exotics
 - Efforts concentrate on Spin-exotic
 - Forbidden for $q\overline{q}$:

 $J^{PC} = 0^{--}, even^{+-}, odd^{-+}$

Experiments:

- Hadroproduction: GAMS, VES, E852, COMPASS
- pp annihilation: Crystal Barrel, OBELIX, PANDA(under construction)
- Photoproduction: GlueX(2017-), CLAS

• Lightest spin-exotic state in LQCD: 1⁻⁺ hybrid

Decay width of 1^{-+} hybrid π_1

Spin-exotic mesons

- Over 3 decades, only 3 candidates so far: All 1⁻⁺ isovectors
 - $\pi_1(1400)$: mostly in $\eta\pi$
 - $\pi_1(1600)$: seen in $\rho\pi$, $\eta'\pi$, $b_1\pi$, $f_1\pi$, but not $\eta\pi$
 - $\pi_1(2015)$: needs confirmation
- A big step forward: $\pi_1(1400) \& \pi_1(1600)$ can be one pole

[PRL 122, 042002 (2019), EPJ C 81, 1056 (2021)]

Coupled-channel analysis of COMPASS data

Detailed reviews: PRC 82, 025208 (2010), PPNP 82, 21 (2015)							
$\pi_{\overline{beam}} \xrightarrow{X} \stackrel{h_1}{\underset{h_n}{\overset{\vdots}{\underset{h_n}{\underset{h_n}{\underset{h_n}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{n}{\underset{n}{\underset{n}{$							
	Decay mode	Reaction	Experiment				
π ₁ (1400)	ηπ	$\pi^- p ightarrow \pi^- \eta p$ $\pi^- p ightarrow \pi^0 \eta n$ $\pi^- p ightarrow \pi^- \eta p$ $\pi^- p ightarrow \pi^0 \eta n$ $\bar{p}n ightarrow \pi^- \pi^0 \eta$ $\bar{p}p ightarrow \pi^0 \pi^0 \eta$	GAMS KEK E852 E852 CBAR CBAR				
	$ ho\pi$	$\bar{p}p \rightarrow 2\pi^+ 2\pi^-$	Obelix				
π ₁ (1600)	η΄π	$ \begin{aligned} \pi^{-}Be &\to \eta' \pi^{-} \pi^{0}Be \\ \pi^{-}p &\to \pi^{-}\eta' p \end{aligned} $	VES E852				
	$b_1\pi$	$\pi^{-}Be \rightarrow \omega\pi^{-}\pi^{0}Be$ $\bar{p}p \rightarrow \omega\pi^{+}\pi^{-}\pi^{0}$ $\pi^{-}p \rightarrow \omega\pi^{-}\pi^{0}p$	VES CBAR E852				
	ρπ	$\pi^{-}Pb \to \pi^{+}\pi^{-}\pi^{-}X$ $\pi^{-}p \to \pi^{+}\pi^{-}\pi^{-}p$	COMPASS E852				
	$f_1\pi$	$\pi^{-}p \rightarrow p\eta\pi^{+}\pi^{-}\pi^{-}$ $\pi^{-}A \rightarrow \eta\pi^{+}\pi^{-}\pi^{-}A$	E852 VES				
π ₁ (2015)	$f_1 \pi$ $b_1 \pi$	$\pi^{-}p \rightarrow \omega \pi^{-} \pi^{0} p$ $\pi^{-}p \rightarrow p \eta \pi^{+} \pi^{-} \pi^{-}$	E852				

- Isoscalar 1⁻⁺ is critical to establish the hybrid nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011), PRD 83,014006 (2011), EPJ P135, 945(2020)

 \rightarrow Search for η₁ (1⁻⁺) in J/ψ \rightarrow γηη'

$$\pi_{1} I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

$$K_{1} I^{G}(J^{P}) = \frac{1}{2}^{-}(1^{-})$$

$$\eta'_{1} I^{G}(J^{PC}) = 0^{+}(1^{-+})$$

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

• An isoscalar 1⁻⁺, $\eta_1(1855)$, has been observed in J/ $\psi \rightarrow \gamma \eta \eta'$ (>19 σ)

$$\begin{split} \mathsf{M} &= \left(1855 \pm 9^{+6}_{-1}\right) \mathsf{MeV/c^2}, \ \mathsf{\Gamma} &= \left(188 \pm 18^{+3}_{-8}\right) \mathsf{MeV/c^2} \\ \mathsf{B}(\mathsf{J/\psi} \to \gamma \eta_1(1855) \to \gamma \eta \eta') &= \left(2.70 \pm 0.41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$

- Mass consistent with hybrid on LQCD
- ηη' in P-waves uniquely indicates 1⁻⁺ exotic quantum numbers

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

 Inspired many interpretations: Hybrid/KK₁Molecule/Tetraquark?

> NPA 1047 122874(2024); Rept.Prog.Phys. 86 (2023) 026201; PRD 107 (2023) 7, 074028; SCPMA 65 (2022) 6, 261011; CPC 46 , 051001(2022); CPL 39, 051201 (2022); PLB 834, 137478(2022); PRD 106 , 074003(2022); PRD 106, 036005(2022) ;...

- Opens a new direction to completing the picture of spin-exotics
 - As a "recent achievements and highlights" in hadron spectroscopy in the NuPECC LRP
 - 50 years of QCD: Exotic mesons, "observation of an $\eta_1(1855)$ state could be a breakthrough" [EPJ.C 83 (2023) 1125]

Studies of π_1 in $\chi_{c1} \rightarrow \pi^+\pi^-\eta^{(\prime)}$

Search for η_1 in $\chi_{c1} \rightarrow \eta \eta \eta'$

BESIII arXiv:2504.19087

Observations of π_1 and η_1 in charmonium decays provide a new path to study 1^{-+}

- Measure the properties of $\pi_1(1600)$
- Confirm $\eta_1(1855)$ and measure its properties in more processes
- Identify the expected $\eta_1^{(\prime)}$ partner
- Other exotic quantum numbers: 0^{--} , 2^{+-} ,
- Analog in $\bar{c}c$

Search for a 1^{-+} molecular state via $e^+e^- \rightarrow \gamma D_s^+ D_{s1}^-(2536) + c.c.$ BESIII arXiv:2503.11015Search for 1^{-+} charmonium-like hybrid via $e^+e^- \rightarrow \gamma \eta^{(\prime)} \eta_c$ at center-of-mass energiesBESIII arXiv:2504.13539between 4.258 and 4.681 GeVBESIII arXiv:2504.13539

Outlook

• Having established the existence of new forms of hadrons is only the starting point

Underlying physics responsible for the rich spectrum

- Measure their properties
- Establish the multiplets
- Global efforts with various probes in running and planned experiments
 - Charmonium decays provide an ideal lab for glueballs and hybrids

- Leveraging the high precision of current and future data requires
 - Advanced analysis techniques
 - Close theory-experiment collaboration

backups

Hadron spectroscopy

- Quark model seems to work really well. Why?
- Compelling evidence for new hadrons
 - Multi-quark candidates in heavy quark sector
 - X(3872), Z_c, P_c, T_{cc}, …
 - Evidence for gluonic excitations remains sparse

Glueballs in analytical and phenomenological models

What we have learned before

-- from MarkIII, BES, Crystal barrel, OBELIX, WA102, GAMS, E852, ...

Scalar: 1 nonet in quark model, $f_0 \& f_0'$ Exp: overpopulation LQCD : ground state 0⁺ glueball ~1.7 GeV; $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ Tensor: 2 nonets(³P₂, ³F₂), complicated Exp: large uncertainty LQCD: 2⁺⁺(2.3~2.4 GeV); $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

Pseudoscalar: $\eta \& \eta'$, "simple"

Exp: lacking of info. above 2 GeV; puzzles η(1295)? η(1405/1475)?

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$

e⁺e⁻ annihilation pp annihilation central exclusive production charge-exchange reactions

Landscape of glueballs has been updated with BESIII' s inputs

Scalar: 1 nonet in quark model, $f_0 \& f_0'$

Exp: overpopulation

LQCD : ground state 0⁺ glueball ~1.7 GeV;

 $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$

Tensor: 2 nonets(³P₂, ³F₂), complicated

Exp: large uncertainty LQCD: $2^{++}(2.3 \sim 2.4 \text{ GeV});$ $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

Pseudoscalar: $\eta \& \eta'$, "simple"

Exp: lacking of info. above 2 GeV; puzzles η(1295)? η(1405/1475)?

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$ ✓ f₀(1710) is largely overlapped with the scalar glueball, according to its production and decay properties

 Large production rate of f₂(2340) in J/ψ radiative decays

 \checkmark Non-observation of $\eta(1295)$

- \checkmark Insights of $\eta(1405/1475)$
- ✓ X(2370): a good candidate with analogy decay pattern as η_c

Scalar glueball candidate: decay properties

Flavor-blindness of glueball decays

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

New inputs from $J/\psi \rightarrow \gamma \eta \eta'$ [BESIII PRL 129 192002(2022), PRD 106 072012(2022]

- Significant $f_0(1500)$ $\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$
- Absence of $f_0(1710)$ consistent with PDG $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$
- > Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

[PR D 92, 121902; PR D 92, 114035]

Bottom line: Predictions on mixing scheme and decay property of glueball are model-dependent

More scalars

++++₊₊₊₊+++++₊₊₊₊+++

2000

1500

1000

500

200

150

100

50 500

400

300

200

100 500

400

300

200

100

4000

 ωK^+K^-

 $\phi\pi^+\pi^-$

 ϕK^+K^-

Evts/25MeV

Evts/25MeV

Evts/30MeV

Evts/30MeV

а $\omega \pi^{\dagger} \pi^{\cdot}$

b

С

-d

ωK⁺K⁻

 $\varphi \pi^{+} \pi^{-}$

øK⁺K⁻

Two photon couplings

$\gamma \gamma \rightarrow K_S K_S$ Belle PTEP 2013 (2013) 12, 123C01

BESIII preliminary

Proper assignment requires more sophisticated model

•
$$\gamma\gamma \rightarrow \eta'\pi^+\pi^-$$

Belle PRD 86 052002(2012)

Amplitude analysis

Amplitude analysis is a key tool of hadron spectroscopy to disentangle contributions from individual resonances and to extract the resonance's spin-parity, mass, width and decay properties

 $Prob(\xi; \alpha) = \frac{\omega(\xi, \alpha)\epsilon(\xi)}{\int d\xi \omega(\xi, \alpha)\epsilon(\xi)} \qquad \xi \text{ (the four-momenta of the final-state particles),} \\ \omega(\xi, \alpha) = \frac{d\sigma}{d\Phi} = |\sum_i A_i|^2 \text{ differential cross section,} \\ \log (\xi, \alpha) = \frac{d\sigma}{d\Phi} = |\sum_i A_i|^2 \text{ differential cross section,} \\ \varepsilon(\xi) \text{ efficiency} \qquad \varepsilon(\xi) \text{ efficiency}$

For J/ψ radiative decays

[Eur. Phys. J. A 16, 537]

$$\begin{split} A &= \psi_{\mu}(m_{1})e_{\nu}^{*}(m_{2})A^{\mu\nu} = \psi_{\mu}(m_{1})e_{\nu}^{*}(m_{2})\sum_{i}\Lambda_{i}U_{i}^{\mu\nu} \\ \text{e.g. J/}\psi \to \gamma 0^{-+}, 0^{-+} \to f_{0}\eta, f_{0}\pi\pi \\ \langle \gamma 0^{-+}|(f_{0}\eta)1\rangle = S_{\mu\nu}B_{1}(Q_{\psi\gamma X})f_{(12)}^{(f_{0})} \end{split}$$

$$S_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta} p_{\psi}^{\alpha} q^{\beta}$$

 $B_1(Q_{\psi\gamma X})$ is Blatt-Weisskopf centrifugal barrier for $J/\psi \rightarrow \gamma X$

Perform an un-binned loglikelihood fit (fit the data event-wise to high-dimensional distributions using complex weights) to make our model for ω agree with the experimental distribution by varying the α

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

BESIII PRL 132 181901(2024)

Nominal fit solution

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0^-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0^-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
PHSP	0-+	$\eta'(K^0_S K^0_S)_{S-wave}$			9.0σ
		$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ

- X(2370)'s $J^{PC} = 0^{-+}$ with 9.8 σ
- Product branching fraction:
 $$\begin{split} &B(J/\psi \to \gamma X(2370) B(X(2370) \to \eta' K^0_S K^0_S) B(f_0(980) \to K^0_S K^0_S) \\ &= (1.31 \pm 0.22^{+2.85}_{-0.84}) \times 10^{-5} \end{split}$$

Decay Modes for 0⁻⁺ Glueball Searches

- Typically, PPP (3 pseudoscalar mesons, such as $\pi\pi\eta$, $\pi\pi\eta$ ', KK π) modes are believed as golden decay modes in 0⁻⁺ glueball searches.
 - S wave decays for 0⁻⁺ mesons, no suppression factor, major decay modes
 - PPP modes are either forbidden or strongly suppressed in 0⁺⁺, 2⁺⁺ mesons decays spin-parity filter
- PP (2 pseudoscalar mesons) modes are forbidden for 0⁻⁺ mesons
- VV modes (2 vector mesons, such as $\omega\omega$, $\phi\phi$, $\rho\rho$, K*K*)
 - P wave decays for 0⁻⁺ mesons suppressed decays, especially near mass threshold
 - All J^{PC} mesons allowed, not a spin-parity filter
- Baryon modes
 - All J^{PC} mesons allowed, not a spin-parity filter
- Multi-pion modes
 - All J^{PC} mesons allowed, not a spin-parity filter
 - 0-+ mesons decay mainly via 2 body sequential decays, i.e., mainly via f2(1270), a1(1260) pair intermediate states — 0-+ glueball mass may not be high enough, i.e., PS is not allowed.

X(2370) seen in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ BESIII PRL 115 091803(2015)

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

• Angular distribution as a function of $M(\eta\eta')$ expressed **model-independently**

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0 (\cos \theta_{\eta}^i)$$

Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in ηη' by:

 $\sqrt{4\pi} \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$

 $\sqrt{4\pi}\langle Y_1^0 \rangle = 2S_0 P_0 \cos \phi_{P_0} + \frac{2}{\sqrt{5}} (2P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) + \sqrt{3}P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0 D_0 \cos \phi_{D_0}$$
$$\sqrt{4\pi} \langle Y_3^0 \rangle = \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$$

$$\sqrt{4\pi}\langle Y_4^0 \rangle = \frac{1}{7}(6D_0^2 - 4D_1^2 + D_2^2).$$

• Narrow structure in $\langle Y_1^0 \rangle$

 \succ Cannot be described by resonances in $\gamma\eta(\eta')$

- $\eta_1(1855) \rightarrow \eta\eta'$ needed

Where is the 0⁻⁺ glueball

- Pseudoscalar sector, a promising window [Future Physics Programme of BESIII(2020)]
 - Only $\eta,\,\eta'$ (& radial excitations) from quark model

Mass

- LQCD: 0⁻⁺ glueball (2.3~2.6 GeV)
- The first glueball candidate: $\iota(1440)$ (Split into $\eta(1405)$ and $\eta(1475)$)
 - Mass incompatible with LQCD
- Little experimental information above 2 GeV

Isospin-violating decay of $\eta(1405) \rightarrow f_0(980)\pi^0$

Shed new lights on the $\eta(1405)/\eta(1475)$ puzzle

 $J/\psi \rightarrow \gamma K_S K_S \pi^0$

- Mass Independent PWA in bins of $M(K_SK_S\pi^0)$ to detangle J^{PC} components
 - Valuable inputs to develop models
- Mass Dependent PWA with BW to extract resonances
- Consistency between MI and MD results
- Dominated by 0⁻⁺
 - Two BWs around 1.4 GeV is needed
- Coupled-channel analysis
 - PRD 107, L091505 (2023);
 PRD 109, 014021 (2024);
 arXiv:2407.10234

BESIII JHEP 03 121(2023)

From the amplitude analysis,

- $\eta(1405)$ is observed, while $\eta(1475)$ can not be excluded
- $X(1835) \rightarrow \gamma \varphi$ suggests its assignment of η' excitation
- $\eta_c \rightarrow \gamma \varphi$ are observed. The very first radiative decay mode of η_c
- Observation of $f_2(1950)$ and $f_0(2200) \rightarrow \gamma \varphi$ unfavored their glueball interpretations [PRD 108, 014023, Sci.China Phys.Mech.Astron. 67 (2024) 11, 111012]

Indications of tensor glueball

still desired to study more decay modes

 Consistent with double-Pomeron exchange from WA102@CERN

More complicated due to the large number of tensor states