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γN → πN and N∗(1535) with
Hamiltonian Effective Field
Theory



Nucleon Resonances

• Naive quark model predicts wrong mass order for N∗(1440) & N∗(1535).

• Nucleon Resonances are important for interpreting the scattering experimental data.

• Their properties are helpful to understand the nonperturbative behavior of QCD.
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Pion Photoproduction off Nucleon with Hamiltonian EFT

• combining
• πN → πN
• lattice QCD spectrum of N∗

• γ + N → π + N

• γ + N → π + N
• γNN etc. couplings are not adjusted

EM

γ π

N N

+ EM FSI

γ π

N N

M(γN → πN) ∼ MEM(γN → πN)

+MEM(γN → πN)⊗MFSI(πN → πN)

+MEM(γN → ηN)⊗MFSI(ηN → πN)

• Finite State Interaction (FSI) part can be determined independently
• understand the structure of N(1535) and the interactions of πN/ηN at low energies and
near the resonance

• necessities for the photon­nucleus investigation
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1. πN → πN
2. lattice QCD spectrum of N∗

3. γ + N → π + N
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N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.

G2
πN;N∗0

(k) =
3g2πN;N∗0
4π2f2

ωπ(k)

VS
πN,πN(k, k

′) =
3gSπN

4π2f2
mπ + ωπ(k)

ωπ(k)
mπ + ωπ(k′)

ωπ(k′)

π(−k)

N(k)

B0
π(−k)

N(k)

η(−k′)

N(k′)

• Phase shifts and inelasticities
are obtained by solving Bethe­Salpeter equation with the interactions.

Tα,β(k, k′;E) = Vα,β(k, k′) +
∑
γ

∫
q2dqVα,γ(k, q)

1

E−
√
m2

γ1
+ q2 −

√
m2

γ2
+ q2 + iϵ

Tγ,β(q, k′;E)
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N∗(1535) with πN scattering at infinite volume
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πN Scattering with I(JP) = 1
2 (

1
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).

Our Pole: 1531 ± 29 − i 88 ± 2 MeV. Particle Data Group: 1510±20 − i 85 ± 40 MeV.

Z. W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas and J. J. Wu,
Phys. Rev. Lett. 116 (2016) no.8, 082004
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1. πN → πN

2. lattice QCD spectrum of N∗

3. γ + N → π + N
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Lattice QCD

• LQCD starts from the first principle of QCD

• model independent, reliable

• LQCD gives hadron spectra and quark distribution functions
at finite volumes, large quark masses, discrete spaces

• not directly related to physical observables
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Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data → Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single­channel problems
Spectrum → Phaseshifts;

• Effective Field Theory (EFT), Models, etc
with low­energy constants fitted by Lattice QCD data

Physical Data → Lattice QCD Data

• EFT: discretization, analytic extension, Lagrangian modification
• various discretization: eg. discretize the momentum in the loop
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Lattice QCD and Effective Field Theory

Effective field theory deals with extrapolation powerfully.

Finite­volume effect can be studied by discretizing the EFT.

Discrete spacing effects can also be studied with EFT.
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Scattering Data and Lattice QCD data are two important sources for studying
resonances.

We should try to analyse them both at the same time.
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Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume

and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2­particle irreducible diagrams)→
potentials (via Betha­Salpeter Equation)→
phaseshifts and inelasticities

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra
wavefunctions: analyse the structure of the eigenstates on the lattice

• finite­volume and infinite­volume results are connected by the coupling constants etc.
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Discretization in finite volume

π(−k)

N(k)

B0
π(−k)

N(k)

η(−k′)

N(k′)

G̃i(kn) =
√

C3(n)
4π

(
2π
L

)3/2Gi(kn),

ṼSi,j(kn, km) =
√
C3(n)C3(m)

4π
(
2π
L

)3VSi,j(kn, km).

C3(n) represents the number of summing the squares of three integers to equal n.

With the eigen­solution of the discretized Hamiltonian, one can obtain the mass spectrum and the components.

H0 = diag{m0
N1

, ωπN(k0), ωηN(k0), ωπN(k1), ωηN(k1), ...},

HI =



0 G̃πN(k0) G̃ηN(k0) G̃πN(k1) G̃ηN(k1) . . .

G̃πN(k0) ṼSπN,πN(k0, k0) 0 ṼSπN,πN(k0, k1) 0 . . .

G̃ηN(k0) 0 0 0 0 . . .

G̃πN(k1) ṼSπN,πN(k1, k0) 0 ṼSπN,πN(k1, k1) 0 . . .

G̃ηN(k1) 0 0 0 0 . . .
...

...
...

...
...

. . .


,
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non­interacting energies of the two­particle channels
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non­interacting energies of the two­particle channels
Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
We not only provide the mass but also analyze why some states are observed on the lattice
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering states.
• The most probable state at physical quark mass is the 4th eigenstate.

It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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Components of Eigenstates with L ≈ 3 fm
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1. πN → πN

2. lattice QCD spectrum of N∗

3. γ + N → π + N
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Electromagnetic Multipoles
• |γN⟩ → |ϕ (⃗k), N(−k⃗, s′Nz )⟩, kx, ky, kz, s′Nz
• |γN⟩ → |ϕN; k, J, Jz, L⟩ , k, J, Jz, L
• |γN⟩ → |ϕN; k, J, Jz, λ′

N⟩ , k, J, Jz, λ′
N

EM

γ π

N N

+ EM FSI

γ π

N N

Partial wave decomposition:

Vα,γN(J, λ
′
N, λγ , λN; k, q) = 2π

∫ 1

−1
d(cos θ)

∑
s′Nz

dJλγ−λN,−λ′
N
(θ)d1/2

s′Nz ,−λ′
N
(θ)∗Mα,γN(s

′N
z , λN, λγ ; k⃗, q⃗),

VJLS;λγλN
α,γN (k, q) =

√
2L + 1
2J + 1

∑
λ′
N

⟨L,S, 0,−λ
′
N|J,−λ

′
N⟩

×Vα,γN(J, λ
′
N, λγ , λN; k, q).

EM

γ π

N N

= + +

Nbare(1535)

+...

D. Guo and Z. W. Liu, Phys. Rev. D 105 (2022) no.11, 11 17



Electric dipole amplitudes E0+
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Estimation of the N∗(1650) contribution
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Couplings for the effective vertices
are extracted from the decay widths
of N∗(1650).

D. Guo and Z. W. Liu, Phys. Rev. D 105 (2022) no.11, 11 19



Therefore, we updated our results by

Explicitly including N∗(1650) as well as N∗(1535)

20



γN → πN and the Interference of
N∗(1535) and N∗(1650)



Explicitly including N∗(1650) as well as N∗(1535)

In Phys. Rev. D 108 (2023) 9, 094519, we consider

• two bare baryon states N1 and N2;
• πN, ηN, and KΛ;
• more experimental data with larger energies (1.60, 1.75) GeV.
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Pole positions for N∗(1535) and N∗(1650)

In the Particle Data Group (PDG) tables,
the poles for the two low­lying odd­parity
nucleon resonances are given as

EN∗(1535) = 1510± 10− (65± 10)i MeV ,

EN∗(1650) = 1655± 15− (67± 18)i MeV .

Using HEFT, two poles for N∗(1535)
and N∗(1650) in the second Rie­
mann sheet are found at energies

E1 = 1500− 50i MeV ,

E2 = 1658− 56i MeV .

Our results are in excellent agreement with the PDG pole positions.
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Finite­volume spectrum
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Finite­volume Spectrum with larger Spatial Lattice Extent of L = 4.05 fm
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Comparison with the lattice QCD calculations from
[J. Bulava, A. D. Hanlon, et. al. Nucl. Phys. B 987, 116105 (2023).]

Dashed lines indicate the non­interacting two­particle
πN energies for k = 0 and k = 1.

Solid lines are our HEFT results.
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Electric dipole amplitudes E0+ with two bare states
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Yu Zhuge, Zhan­Wei Liu, Derek B. Leinweber, Anthony W. Thomas, Phys.Rev.D 110 (2024) 9, 094015.
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The bare core in N∗(1535)
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• If N∗(1535) has no bare core, it would play roles ONLY in finite state interaction
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The bare core in N∗(1535) cannot be absent in pion photoproduction
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γ∗N → πN in Finite Volume and
Comparison with Recent Lattice
QCD Simulations



Latest lattice QCD data on E+
0

The lattice QCD results is very close to the partial wave analysis from the
Jülich­Bonn­Washington collaboration.
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First lattice QCD simulation
of pionproduction!

Gao, Yu­Sheng and Zhang, Zhao­Long and Feng, Xu and Jin, Lu­Chang and Liu, Chuan and Meißner, Ulf­G., Lattice QCD Study of Pion

Electroproduction and Weak Production from a Nucleon, arXiv: 2502.12074

Please see Zhang Zhao­Long’s talk in next session for more details.
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Direct extension of our previous work

EM

γ π
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From the real photon (q2 = 0) to the virtual spacelike photon (q2 < 0), we

• do not adjust the previous parameters,
• add the form factors of neutrons and pion:

• F(q2 = 0) = 1,
• F(q2 < 0) < 1,
• F(q2) is well determined by the experiment.
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Latest lattice QCD data and our preliminary results

The finite volume effect is at the order of the error bar of lattice QCD data.
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Summary



Summary

Combined with scattering data and lattice QCD simulations:

• πN → πN ,

• lattice QCD spectrum of N∗,

• γ + N → π + N,

• lattice QCD simulation of pionproduction,

we have studied the properties of nucleon resonance and the relevant strong couplings.
The triquark components are important for the N∗(1535) and N∗(1650).

With the lattice QCD simulations much more developed, some hadron puzzles will be
solved out better compared to those with the traditional scattering experiments only.
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Thank you for your attention!
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