

# 2025年轻强子专题研讨会 河南 安阳

## Light single-gluon hybrid states with various exotic quantum numbers

## Wei-Han Tan

## **Southeast University**

Collaborator:Niu Su, Hua-Xing Chen, Wei Chen, Shi-Lin Zhu



- Method of the QCD sum rules
- Numerical analyses
- Decay behavior
- Summary



- Method of the QCD sum rules
- > Numerical analyses
- Decay behavior
- Summary



• Traditional quark model



• Exotic hadron: hybrid state, glueball, tetraquark, etc.



• Exotic spin-parity quantum numbers



PhysRevLett.129.192002.



$$\eta_1(1855)$$
 :  $M = 1855 \pm 9^{+6}_{-1} \text{ MeV}/c^2$ ,  
 $\Gamma = 188 \pm 18^{+3}_{-8} \text{ MeV}$ .

| $\pi_1(1400)$           | $M = 1354 \pm 25 \text{ MeV},$           |     |
|-------------------------|------------------------------------------|-----|
|                         | $\Gamma = 330 \pm 35 \mathrm{MeV};$      |     |
| $\pi_1(1600)$           | $M = 1661^{+15}_{-11} \text{ MeV},$      |     |
| 1000 - Roman Constantin | $\Gamma = 240 \pm 50 \mathrm{MeV};$      |     |
| $\pi_1(2015)$           | $M = 2014 \pm 20 \pm 16$ M               | eV, |
| unosite surris          | $\Gamma = 230 \pm 32 \pm 73 \text{ MeV}$ | Τ.  |

#### $\pi_1(1400)$

Phys. Lett. B 205 (1988) 397 Phys. Rev. Lett. 79 (1997) 1630–1633. Phys. Lett. B 423 (1998) 175–184. Phys. Rev. D 72 (2005) 114507. Phys. Lett. B 314 (1993) 246–254. AIP Conf. Proc. 619 (1) (2002)143–154. Eur. Phys. J. C 80 (5) (2020) 453.

#### $\pi_1(1600)$

Phys. Rev. Lett. 81 (1998) 5760–5763. Phys. Lett. B 563 (2003) 140–149. Phys. Rev. D 84 (2011) 112009.

Nucl. Phys. A 663 (2000) 596–599. Phys. Rev. Lett. 104 (2010) 241803. Phys. Rev. D 68 (2003) 074505.

#### $\pi_1(2015)$

Phys. Lett. B 595 (2004) 109–117. Phys. Rev. Lett. 94 (2005) 032002. Nucl. Phys. B Proc. Suppl. 73 (1999) 264–266.

• The QCD sum rule method has been widely applied to study the  $J^{PC} = 1^{-+}$  hybrid states.

| Nucl. Phys. B 248 (1984) 1–18.Phys. | Lett. B 485 (2000) 145–150        |
|-------------------------------------|-----------------------------------|
| Eur.Phys. J. C 8 (1999) 465–471.    | Z.Phys. C 34 (1987) 347.          |
| Phys. Rev. D 76(2007) 094001.       | Nucl. Phys. B 196 (1982) 125–146. |
| Phys. Lett.B 675 (2009) 319–325.    |                                   |

• This method has also been applied to study the  $J^{PC} = 0^{+-}$  and  $2^{+-}$  hybrid states.

Phys. Rev. D 98 (9) (2018) 096020. Phys. Rev. D 108(2023), 114010

• Problem: other quantum numbers have not been well studied Purpose: systematically investigate the single-gluon hybrid states through the QCD sum rule method.



## Method of the QCD sum rules

- > Numerical analyses
- Decay behavior

## Summary

 $J_{1-+}^{\mu} = \bar{q}_a \lambda_n^{ab} \gamma_\beta q_b \ g_s G_n^{\mu\beta} ,$ Interpolating currents:  QCD sum rules

• In QCD sum rule analyses, we consider two-point correlation functions:

$$\begin{split} \Pi_{1^{-+}}^{\mu\nu}(q^2) \\ &\equiv i \int d^4 x e^{iqx} \langle 0 | \mathbf{T} [J_{1^{-+}}^{\mu}(x) J_{1^{-+}}^{\nu\dagger}(0)] | 0 \rangle \\ &= (g^{\mu\nu} - q^{\mu}q^{\nu}/q^2) \ \Pi_{1^{-+}}(q^2) + (q^{\mu}q^{\nu}/q^2) \ \Pi_{0^{++}}(q^2) \,. \end{split}$$

where J is the current which can couple to hadronic states.

• We use the dispersion relation to express  $\prod_{1^{-+}}(q^2)$  as

$$\prod_{\substack{a \in \mathbf{x} \neq \mathbf{x} \\ q^2}} \prod_{i=1}^{\infty} \prod_{1^{-+}} (q^2) = \int_{s_{<}}^{\infty} \frac{\rho_{1^{-+}}(s)}{s - q^2 - i\varepsilon} ds \,,$$

where  $\rho_1^{-+}(s) \equiv \text{Im} \prod_{1^{-+}}(s)/\pi$  is the spectral density, and  $s_{<} = 4m_q^2$  is the physical threshold.

#### QCD sum rules

• At the hadron level, one pole dominance + continuum contribution:

$$\begin{split} &\rho_{1-+}^{\text{phen}}(s) \times (g^{\mu\nu} - q^{\mu}q^{\nu}/q^2) \\ &\equiv \sum_{n} \delta(s - M_n^2) \langle 0 | J_{1-+}^{\mu} | n \rangle \langle n | J_{1-+}^{\nu\dagger} | 0 \rangle \\ &= f_{1-+}^2 \delta(s - M_{1-+}^2) \times (g^{\mu\nu} - q^{\mu}q^{\nu}/q^2) + \text{continuum} \end{split}$$

• At the quark-gluon level, operator product expansion (OPE). And Borel transformation at both the hadron and quark-gluon levels.

$$\Pi_{1^{-+}}(s_0, M_B^2) \equiv f_{1^{-+}}^2 e^{-M_{1^{-+}}^2/M_B^2} = \int_{s_{<}}^{s_0} e^{-s/M_B^2} \rho_{1^{-+}}^{\text{OPE}}(s) ds,$$



Light single-gluon hybrid states with various exotic quantum numbers

QCD sum rules

$$\begin{split} M_{1^{-+}}^2(s_0, M_B) \; &=\; \frac{\int_{s_{<}}^{s_0} e^{-s/M_B^2} s \rho_{1^{-+}}^{\text{OPE}}(s) ds}{\int_{s_{<}}^{s_0} e^{-s/M_B^2} \rho_{1^{-+}}^{\text{OPE}}(s) ds}, \\ f_{1^{-+}}^2(s_0, M_B) \; &=\; \Pi_{1^{-+}}(s_0, M_B^2) \times e^{M_{1^{-+}}^2/M_B^2}. \end{split}$$

• Two parameters:  $M_B$ ,  $s_0$ 

- Criteria:
- 1. Positivity of spectral density
- 2. Convergence of OPE
- 3. Sufficient amount of pole contribution
- 4. The dependence of mass on parameters  $M_B$ ,  $s_0$

The OPE of current  $J_{1^{-+}}^{\mu}$ 

$$\begin{split} \Pi_{1^{-+}}^{\mu} \left( M_B^2, s_0 \right) &= \int_{4m_s^2}^{s_0} \left( \frac{s^3 \alpha_s}{60\pi^3} - \frac{m_s^2 s^2 \alpha_s}{3\pi^3} + s \left( \frac{\langle \alpha_s GG \rangle}{36\pi^2} + \frac{13 \langle \alpha_s GG \rangle \alpha_s}{432\pi^3} + \frac{8m_s \langle \bar{s}s \rangle \alpha_s}{9\pi} \right) \\ &+ \frac{\langle g_s^3 G^3 \rangle}{32\pi^2} - \frac{3 \langle \alpha_s GG \rangle m_s^2 \alpha_s}{64\pi^3} - \frac{3m_s \langle g_s \bar{s}\sigma Gs \rangle \alpha_s}{4\pi} \right) \times e^{-s/M_B^2} ds \\ &+ \left( \frac{\langle \alpha_s GG \rangle^2}{3456\pi^2} - \frac{\langle g_s^3 G^3 \rangle m_s^2}{16\pi^2} - \frac{2}{9} \langle \alpha_s GG \rangle m_s \langle \bar{s}s \rangle + \frac{11}{9} \pi \langle \bar{s}s \rangle \langle g_s \bar{s}\sigma Gs \rangle \alpha_s \right), \end{split}$$

The OPE with the quark-gluon content  $\bar{q}qg$  (q = u/d) can be easily derived by replacing  $m_s \rightarrow 0$ ,  $\langle \bar{s}s \rangle \rightarrow \langle \bar{q}q \rangle$ , and  $\langle g\bar{s}\sigma Gs \rangle$  $\rightarrow \langle g\bar{q}\sigma Gq \rangle$ .



- Method of the QCD sum rules
- Numerical analyses
- Decay behavior

## Summary

#### **Numerical analyses**

• Convergence of OPE

$$\begin{aligned} \operatorname{CVG}_A &\equiv \left| \frac{\Pi^{g_s^{n=4}}(\infty, M_B^2)}{\Pi(\infty, M_B^2)} \right| \leq 5\%, \\ \operatorname{CVG}_B &\equiv \left| \frac{\Pi^{\mathrm{D}=6+8}(\infty, M_B^2)}{\Pi(\infty, M_B^2)} \right| \leq 10\%. \end{aligned}$$

Sufficient amout of pole contribution



$$\mathrm{PC} \equiv \left| \frac{\Pi(s_0, M_B^2)}{\Pi(\infty, M_B^2)} \right| \ge 40\% \,.$$

$$2.26 \text{GeV}^2 \le M_B^2 \le 2.54 \text{GeV}^2$$

Note that this Borel window is not so wide, and it may indicate that the understanding of this state as a particle has limitations

## **Numerical analyses**

#### The dependence of mass on parameters



$$M_{|\bar{s}sg;0^{+}1^{-+}\rangle} = 1.84^{+0.14}_{-0.15} \,\mathrm{GeV}$$

#### Mass extracted from currents of $\bar{s}sg$

| State $[J^{PC}]$ Current   | $min [C_{2}V^{2}]$               | Working                 | Working Regions        |           | Mass [CaV]    | Desey Constant         |                                         |
|----------------------------|----------------------------------|-------------------------|------------------------|-----------|---------------|------------------------|-----------------------------------------|
|                            | s <sub>0</sub> [Gev ]            | $M_B^2 \; [{ m GeV^2}]$ | $s_0 \; [{\rm GeV^2}]$ | Fole [70] | Mass [Gev]    | Decay Constant         |                                         |
| $ \bar{s}sg; 1^{}\rangle$  | $J_{1^{}}^{lphaeta}$             | 4.3                     | 2.07-2.80              | 6.5       | 40-63         | $1.94^{+0.20}_{-0.21}$ | $0.054^{+0.013}_{-0.016}~{\rm GeV^3}$   |
| $ \bar{s}sg;1^{+-}\rangle$ | $	ilde{J}_{1+-}^{lphaeta}$       | 16.2                    | 3.60 - 5.40            | 20.0      | 40-65         | $4.06^{+0.26}_{-0.16}$ | $0.071^{+0.019}_{-0.020}~{\rm GeV^3}$   |
| $ \bar{s}sg;1^{+-}\rangle$ | $J_{1+-}^{lphaeta}$              | 5.9                     | 2.54-2.72              | 6.5       | 40-45         | $2.01^{+0.17}_{-0.20}$ | $0.050^{+0.005}_{-0.006} \text{ GeV}^3$ |
| $ \bar{s}sg; 1^{}\rangle$  | $\tilde{J}_{1^{}}^{lphaeta}$     | 16.9                    | 3.73-5.30              | 20.0      | 40-61         | $4.12_{-0.13}^{+0.26}$ | $0.070^{+0.019}_{-0.020}~{\rm GeV^3}$   |
| $ \bar{s}sg;0^{++}\rangle$ | $J_{1^{-+}}^{\mu  ightarrow 0}$  | 20.7                    | 5.18 - 7.35            | 26.0      | 40-63         | $4.50^{+0.23}_{-0.22}$ | $0.136^{+0.030}_{-0.034} \ {\rm GeV}^3$ |
| $ \bar{s}sg;0^{-+}\rangle$ | $\tilde{J}^{\mu \to 0}_{1^{++}}$ | 7.2                     | 3.45-4.08              | 9.5       | 40-53         | $2.26^{+0.21}_{-0.24}$ | $0.107^{+0.007}_{-0.005}~{\rm GeV^3}$   |
| $ \bar{s}sg;0^{}\rangle$   | $J_{1+-}^{\mu  ightarrow 0}$     | 21.6                    | 5.36 - 7.23            | 26.0      | 40-59         | $4.57_{-0.19}^{+0.22}$ | $0.134^{+0.031}_{-0.035} \ {\rm GeV}^3$ |
| $ \bar{s}sg;0^{+-}\rangle$ | $\tilde{J}^{\mu \to 0}_{1}$      | 7.5                     | 3.41-3.98              | 9.5       | 40-52         | $2.30^{+0.20}_{-0.24}$ | $0.101^{+0.007}_{-0.006}~{\rm GeV^3}$   |
| $ \bar{s}sg;1^{-+}\rangle$ | $J_{1^{-+}}^{\mu}$               | 5.1                     | 2.26 - 2.54            | 6.2       | 40-49         | $1.84_{-0.15}^{+0.14}$ | $0.300^{+0.063}_{-0.058}~{\rm GeV^4}$   |
| $ \bar{s}sg;1^{++}\rangle$ | $	ilde{J}^{\mu}_{1^{++}}$        | 14.1                    | 3.64-4.80              | 17.0      | <b>40–5</b> 8 | $3.65_{-0.17}^{+0.17}$ | $1.678^{+0.530}_{-0.502} \text{ GeV}^4$ |
| $ \bar{s}sg;1^{+-}\rangle$ | $J^{\mu}_{1+-}$                  | 3.9                     | 1.85 - 2.43            | 6.0       | <b>40–6</b> 2 | $1.82_{-0.15}^{+0.13}$ | $0.278^{+0.059}_{-0.056}~{\rm GeV^4}$   |
| $ \bar{s}sg;1^{}\rangle$   | $	ilde{J}^{\mu}_{1}$             | 13.8                    | 3.50-4.80              | 17.0      | 40-61         | $3.64_{-0.17}^{+0.17}$ | $1.662^{+0.526}_{-0.498} \text{ GeV}^4$ |

## Numerical analyses

| State [ IPC] Cumont        | $min [C = V^2]$                                        | Working Regions      |                         | Dolo [07]             | Mass [CaV] | Dearry Constant        |                                         |
|----------------------------|--------------------------------------------------------|----------------------|-------------------------|-----------------------|------------|------------------------|-----------------------------------------|
| State [J]                  | Current                                                | s <sub>0</sub> [Gev] | $M_B^2 \; [{ m GeV}^2]$ | $s_0 \; [{ m GeV}^2]$ |            | Mass [Gev]             | Decay Constant                          |
| $ \bar{s}sg;0^{++}\rangle$ | $J_{0^{++}}$                                           | 11.5                 | 3.53-4.33               | 14.0                  | 40-55      | $3.11_{-0.27}^{+0.22}$ | $3.535^{+1.338}_{-1.242} \text{ GeV}^4$ |
| $ \bar{s}sg;0^{-+}\rangle$ | $J_{0^{-+}}$                                           | 11.3                 | 3.51 - 4.36             | 14.0                  | 40-56      | $3.08^{+0.23}_{-0.28}$ | $3.509^{+1.328}_{-1.233} \text{ GeV}^4$ |
| $ \bar{s}sg;1^{++}\rangle$ | $J_{1^{++}}^{\alpha\beta}$                             | 6.6                  | 1.95 - 2.27             | 7.5                   | 40-51      | $2.34_{-0.16}^{+0.14}$ | $0.061^{+0.012}_{-0.014} \ {\rm GeV}^3$ |
| $ \bar{s}sg;1^{-+}\rangle$ | $\tilde{J}_{1^{-+}}^{\alpha\beta}$                     | 5.5                  | 1.82-2.25               | 7.0                   | 40-57      | $2.08^{+0.18}_{-0.24}$ | $0.061^{+0.010}_{-0.010} { m GeV}^3$    |
| $ \bar{s}sg;1^{-+}\rangle$ | $J_{1^{-+}}^{\alpha\beta}$                             | 5.5                  | 1.82-2.25               | 7.0                   | 40-57      | $2.08^{+0.18}_{-0.24}$ | $0.061^{+0.010}_{-0.010} { m GeV^3}$    |
| $ \bar{s}sg;1^{++}\rangle$ | $\tilde{J}_{1^{++}}^{\alpha\beta}$                     | 6.6                  | 1.95-2.27               | 7.5                   | 40-51      | $2.34^{+0.14}_{-0.16}$ | $0.061^{+0.012}_{-0.014} { m GeV^3}$    |
| $ \bar{s}sg;2^{++}\rangle$ | $J_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$         | 9.2                  | 3.22-3.60               | 10.5                  | 40-49      | $2.59^{+0.19}_{-0.23}$ |                                         |
| $ \bar{s}sg;2^{-+}\rangle$ | $	ilde{J}_{2^{-+}}^{lpha_1eta_1,lpha_2eta_2}$          | 13.4                 | 2.55-4.29               | 16.0                  | 40-66      | $3.72_{-0.13}^{+0.72}$ |                                         |
| $ \bar{s}sg;2^{-+}\rangle$ | $J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$         | 8.1                  | 3.04-3.72               | 10.5                  | 40-56      | $2.51^{+0.20}_{-0.24}$ | _                                       |
| $ \bar{s}sg;2^{++}\rangle$ | $\tilde{J}_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$ | 11.8                 | 2.36-4.47               | 16.0                  | 40-78      | $3.54_{-0.16}^{+0.42}$ |                                         |

$$M_{|\bar{s}sg;0^{+}1^{-+}\rangle} = 1.84^{+0.14}_{-0.15} \text{ GeV},$$
  
$$f_{|\bar{s}sg;0^{+}1^{-+}\rangle} = 0.300^{+0.063}_{-0.058} \text{ GeV}^{4}$$

#### Mass extracted from currents of $\overline{q}qg(q = u/d)$

| State [ PC] Current        | min [CoV2]                      | Working Regions      |                          | Dolo [07]             | Maga [CaV] | Decor Constant                |                                         |
|----------------------------|---------------------------------|----------------------|--------------------------|-----------------------|------------|-------------------------------|-----------------------------------------|
| State [J]                  | Current                         | s <sub>0</sub> [Gev] | $M_B^2 \; [{ m GeV}^2]$  | $s_0 \; [{ m GeV}^2]$ |            | Mass [Gev]                    | Decay Constant                          |
| $ \bar{q}qg;1^{}\rangle$   | $J_{1}^{\alpha\beta}$           | 4.2                  | 2.03-2.48                | 5.5                   | 40-54      | $1.80^{+0.13}_{-0.16}$        | $0.051^{+0.004}_{-0.004}~{\rm GeV^3}$   |
| $ \bar{q}qg;1^{+-}\rangle$ | $\tilde{J}^{\alpha\beta}_{1+-}$ | 16.2                 | 3.61 - 4.58              | 18.0                  | 40-53      | $4.05_{-0.12}^{+0.24}$        | $0.063^{+0.020}_{-0.020} \ {\rm GeV}^3$ |
| $ \bar{q}qg;1^{+-}\rangle$ | $J_{1^{+-}}^{\alpha\beta}$      | 5.0                  | 2.29-2.45                | 5.5                   | 40-45      | $1.84_{-0.14}^{+0.12}$        | $0.049^{+0.004}_{-0.004}~{\rm GeV^3}$   |
| $ \bar{q}qg;1^{}\rangle$   | $\tilde{J}_{1}^{\alpha\beta}$   | 16.3                 | 3.52 - 4.56              | 18.0                  | 40-53      | $4.09^{+0.29}_{-0.14}$        | $0.064^{+0.021}_{-0.020}~{\rm GeV^3}$   |
| $ \bar{q}qg;0^{++}\rangle$ | $J_{1^{-+}}^{\mu  ightarrow 0}$ | 20.6                 | 5.11-6.59                | 24.0                  | 40-56      | $4.45_{-0.17}^{+0.22}$        | $0.124^{+0.032}_{-0.036} \ {\rm GeV}^3$ |
| $ \bar{q}qg;0^{-+}\rangle$ | $\tilde{J}_{1++}^{\mu \to 0}$   | 7.7                  | 3.58 - 3.81              | 8.5                   | 40-45      | $2.14_{-0.19}^{+0.17}$        | $0.105^{+0.005}_{-0.004}~{\rm GeV^3}$   |
| $ \bar{q}qg;0^{}\rangle$   | $J_{1+-}^{\mu \to 0}$           | 21.6                 | 5.48-6.52                | 24.0                  | 40-50      | $4.49_{-0.14}^{+0.21}$        | $0.123^{+0.032}_{-0.037} \text{ GeV}^3$ |
| $ \bar{q}qg;0^{+-}\rangle$ | $\tilde{J}_{1}^{\mu \to 0}$     | 7.1                  | 3.32-3.73                | 8.5                   | 40-49      | $2.16\substack{+0.16\\-0.19}$ | $0.100^{+0.005}_{-0.005}~{\rm GeV^3}$   |
| $ \bar{q}qg;1^{-+}\rangle$ | $J^{\mu}_{1^{-+}}$              | 4.8                  | 2. <mark>19</mark> –2.28 | 5.2                   | 40-43      | $1.67\substack{+0.15\\-0.17}$ | $0.243^{+0.057}_{-0.052} \text{ GeV}^4$ |
| $ \bar{q}qg;1^{++}\rangle$ | $\tilde{J}^{\mu}_{1^{++}}$      | 13.8                 | 3.59-4.10                | 15.0                  | 40-48      | $3.54_{-0.12}^{+0.16}$        | $1.370^{+0.494}_{-0.450} \text{ GeV}^4$ |
| $ \bar{q}qg;1^{+-}\rangle$ | $J_{1^{+-}}^{\mu}$              | 4.6                  | 2.10-2.27                | 5.2                   | 40-46      | $1.68^{+0.14}_{-0.16}$        | $0.242^{+0.055}_{-0.051} \text{ GeV}^4$ |
| $ \bar{q}qg;1^{}\rangle$   | $	ilde{J}^{\mu}_{1^{-}-}$       | 13.7                 | 3.57-4.10                | 15.0                  | 40-49      | $3.53_{-0.12}^{+0.16}$        | $1.366^{+0.493}_{-0.450} \text{ GeV}^4$ |

## Numerical analyses

| State [ IPC] Current       | $min [C_{2}V^{2}]$                                     | Working Regions      |                       | Dolo [07]             | Mass [CoV]           | Deeny Constant                |                                         |
|----------------------------|--------------------------------------------------------|----------------------|-----------------------|-----------------------|----------------------|-------------------------------|-----------------------------------------|
| State [J                   | Current                                                | s <sub>0</sub> [Gev] | $M_B^2 ~[{ m GeV}^2]$ | $s_0 \; [{ m GeV}^2]$ |                      | Mass [Gev]                    | Decay Constant                          |
| $ \bar{q}qg;0^{++}\rangle$ | $J_{0^{++}}$                                           | 11.1                 | 3.48-3.91             | 12.5                  | 40-49                | $2.94^{+0.20}_{-0.25}$        | $2.893^{+1.029}_{-0.948} \text{ GeV}^4$ |
| $ \bar{q}qg;0^{-+}\rangle$ | $J_{0^{-+}}$                                           | 11.1                 | 3.47-3.92             | 12.5                  | 40-49                | $2.93^{+0.20}_{-0.25}$        | $2.882^{+1.026}_{-0.945} \text{ GeV}^4$ |
| $ \bar{q}qg;1^{++}\rangle$ | $J_{1^{++}}^{\alpha\beta}$                             | 5.8                  | 1.84 - 2.06           | 6.5                   | 40-48                | $2.11_{-0.21}^{+0.17}$        | $0.056^{+0.012}_{-0.013} \ { m GeV}^3$  |
| $ \bar{q}qg;1^{-+}\rangle$ | $\tilde{J}_{1^{-+}}^{\alpha\beta}$                     | 5.5                  | 1.81-2.00             | 6.2                   | 40-48                | $2.00^{+0.13}_{-0.16}$        | $0.055^{+0.007}_{-0.008} { m GeV}^3$    |
| $ \bar{q}qg;1^{-+}\rangle$ | $J_{1^{-+}}^{lphaeta}$                                 | 5.5                  | 1.81-2.00             | 6.2                   | 40-48                | $2.00^{+0.13}_{-0.16}$        | $0.055^{+0.007}_{-0.008} \ {\rm GeV^3}$ |
| $ \bar{q}qg;1^{++} angle$  | $	ilde{J}^{lphaeta}_{1^{++}}$                          | 5.8                  | 1.84-2.06             | 6.5                   | 40-48                | $2.11_{-0.21}^{+0.17}$        | $0.056^{+0.012}_{-0.013}~{\rm GeV^3}$   |
| $ \bar{q}qg;2^{++}\rangle$ | $J_{2^{++}}^{lpha_1eta_1,lpha_2eta_2}$                 | 8.6                  | 3.11-3.37             | 9.5                   | 40-46                | $2.44_{-0.24}^{+0.20}$        | 1                                       |
| $ \bar{q}qg;2^{-+}\rangle$ | $\tilde{J}_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$ | 12.7                 | 2.54-3.60             | 14.0                  | 40 <b>-</b> 54       | $3.68^{+0.62}_{-0.18}$        | 100                                     |
| $ \bar{q}qg;2^{-+}\rangle$ | $J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$         | 8.3                  | 3.07-3.41             | 9.5                   | 40-48                | $2.40^{+0.21}_{-0.25}$        | 100                                     |
| $ \bar{q}qg;2^{++}\rangle$ | $\tilde{J}_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$ | 11.7                 | 2.47-3.70             | 14.0                  | 40 <mark>-6</mark> 3 | $3.46\substack{+0.27\\-0.11}$ | 6 <u>8-0</u>                            |

$$M_{|\bar{q}qg;1^{-}1^{-+}\rangle} = M_{|\bar{q}qg;0^{+}1^{-+}\rangle} = 1.67^{+0.15}_{-0.17} \text{ GeV},$$
  
$$f_{|\bar{q}qg;1^{-}1^{-+}\rangle} = f_{|\bar{q}qg;0^{+}1^{-+}\rangle} = 0.243^{+0.057}_{-0.052} \text{ GeV}^4$$



- Method of the QCD sum rules
- Numerical analyses
- Decay behavior

### Summary

#### **Decay behavior**

A. Normal decay process

 $\pi_1 \equiv |\bar{q}qg; 1^-1^{-+}\rangle \to \rho\pi \,,$ 

phenomenological side

three-point correlation function:

$$T_{\mu\nu}(p,k,q) = \int d^4x d^4y e^{ikx} e^{iqy} \times \\ \langle 0|\mathbb{T}[J_{\nu}^{\rho^-}(x)J_5^{\pi^+}(y)J_{1^{-+}}^{\mu\dagger}(0)]|0\rangle$$

select the isovector neutral-charged one

$$J_{1^{-+}}^{\mu} \to \frac{1}{\sqrt{2}} \left( \bar{u}_a \lambda_n^{ab} \gamma_\beta u_b - \bar{d}_a \lambda_n^{ab} \gamma_\beta d_b \right) g_s G_n^{\mu\beta}$$



$$g_{\rho\pi} = 4.08^{+2.40}_{-1.83} \text{ GeV}^{-1},$$
  
 $\Gamma_{\pi_1 \to \rho\pi} = 242^{+310}_{-179} \text{ MeV}.$ 

QCD side

$$T_{\mu\nu}(p,k,q) = g_{\rho\pi}\epsilon_{\mu\nu\alpha\beta}q^{\alpha}k^{\beta} \qquad T_{\mu\nu}(p,k,q) = \frac{\epsilon_{\mu\nu\alpha\beta}q^{\alpha}k^{\beta}}{q^{2}} \times$$
(65)  

$$\times \frac{f_{\pi_{1}}f_{\rho}m_{\rho}f_{\pi}'}{(m_{\pi_{1}}^{2} - p^{2})(m_{\rho}^{2} - k^{2})(m_{\pi}^{2} - q^{2})} \qquad \left(\frac{\langle g_{s}\bar{q}\sigma Gq\rangle}{6\sqrt{2}}(\frac{3}{p^{2}} + \frac{1}{k^{2}}) - \frac{\langle \bar{q}q\rangle\langle g_{s}^{2}GG\rangle}{18\sqrt{2}}(\frac{1}{p^{4}} + \frac{1}{k^{4}})\right).$$
  

$$-g_{\rho\pi}\frac{f_{\pi_{1}}f_{\rho}m_{\rho}f_{\pi}'}{m_{\rho}^{2} - m_{\pi_{1}}^{2}}\left(e^{-m_{\pi_{1}}^{2}/T^{2}} - e^{-m_{\rho}^{2}/T^{2}}\right)$$
  

$$= -\frac{2\langle g\bar{q}\sigma Gq\rangle}{3\sqrt{2}} - \frac{\langle \bar{q}q\rangle\langle g_{s}^{2}GG\rangle}{9\sqrt{2}}\frac{1}{T^{2}}.$$

#### **Decay behavior**

B. Abnormal decay process  $\eta_1 \equiv |\bar{s}sg; 0^+1^{-+}\rangle \rightarrow \eta\eta'$ ,

three-point correlation function:

$$T'_{\mu\nu}(p,k,q) = \int d^4x e^{-ikx} \langle 0|\mathbb{T}[J^{\mu}_{1-+}(0)J^{\eta\dagger}_{\nu}(x)]|\eta'\rangle \,,$$



$$J_{1^{-+}}^{\mu} \to \bar{s}_a \lambda_n^{ab} \gamma_\beta s_b g_s G_n^{\mu\beta}$$
.

#### phenomenological side

$$\begin{split} T'_{\mu\nu}(p,k,q) &= g_{\eta\eta'}k_{\mu}k_{\nu} \frac{f_{\eta_{1}}g_{\eta}}{(m_{\eta_{1}}^{2} - p^{2})(m_{\eta}^{2} - k^{2})}, \\ \text{QCD side} \\ T'_{\mu\nu}(p,k,q) &= \frac{2\theta_{s}m_{\eta'}^{2}f_{\eta'}}{3} + \frac{2\pi^{2}\theta_{s}m_{\eta'}^{2}f_{\eta'}m_{s}\langle\bar{s}s\rangle}{3}\frac{1}{M_{B}^{4}}. \\ &= \frac{2\theta_{s}k_{\mu}k_{\nu}\left(-\frac{2m_{\eta'}^{2}f_{\eta'}}{3k^{2}} - \frac{4\pi^{2}m_{\eta'}^{2}f_{\eta'}m_{s}\langle\bar{s}s\rangle}{3k^{6}}\right), \\ g_{\eta\eta'} &= 3.08^{+1.30}_{-0.91} \text{ GeV}^{-1} \ , \\ \Gamma_{\eta_{1} \to \eta\eta'} &= 5.0^{+4.6}_{-3.1} \text{ MeV}. \end{split}$$

## **Decay behavior**

|                                                 | $ \bar{q}qg;1^{-}1^{-+}\rangle$        | $ \bar{q}qg;0^+1^{-+}\rangle$          | $ \bar{s}sg;0^+1^{-+}\rangle$          |
|-------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Channel                                         | $M = 1.67^{+0.15}_{-0.17} \text{ GeV}$ | $M = 1.67^{+0.15}_{-0.17} \text{ GeV}$ | $M = 1.84^{+0.14}_{-0.15} \text{ GeV}$ |
| $\pi_1/\eta_1 	o  ho\pi$                        | $242_{-179}^{+310}$                    | <u></u>                                | <u>71</u> 0                            |
| $\pi_1/\eta_1 \to b_1(1235)\pi$                 | $14.5^{+25.9}_{-13.9}$                 | 6 <u>10</u>                            | <u> 21</u> 0                           |
| $\pi_1/\eta_1 \to f_1(1285)\pi$                 | $35.9^{+53.9}_{-36.4}$                 | 1 <u>0</u>                             | <u>21</u> 6                            |
| $\pi_1/\eta_1 	o \eta\pi$                       | $2.3^{+2.5}_{-1.2}$                    | 8 <u>4</u> 9                           | <u>81</u> 6                            |
| $\pi_1/\eta_1 \stackrel{b}{ ightarrow} \eta\pi$ | $57.8^{+65.0}_{-31.4}$                 | 8 <u>0</u>                             | 9 <u>—</u> 4                           |
| $\pi_1/\eta_1 	o \eta' \pi$                     | $0.43^{+0.50}_{-0.28}$                 |                                        | -                                      |
| $\pi_1/\eta_1 \xrightarrow{c} \eta' \pi$        | $149^{+162}_{-78}$                     |                                        | -                                      |
| $\pi_1/\eta_1 \to a_1(1260)\pi$                 | _                                      | $79.5^{+112.4}_{-74.9}$                | -                                      |
| $\pi_1/\eta_1 \xrightarrow{a} \eta \eta'$       | _                                      | $0.07^{+0.12}_{-0.07}$                 | $0.93^{+1.04}_{-0.69}$                 |
| $\pi_1/\eta_1 \xrightarrow{b} \eta\eta'$        | _                                      | $1.62^{+2.13}_{-1.61}$                 | $1.64^{+1.51}_{-1.01}$                 |
| $\pi_1/\eta_1 \xrightarrow{c} \eta\eta'$        | _                                      | $11.5^{+11.7}_{-11.5}$                 | $5.0^{+4.6}_{-3.1}$                    |
| $\pi_1/\eta_1 \to K^*(892)\bar{K} + c.c.$       | $25.3^{+34.7}_{-24.7}$                 | $25.3^{+34.7}_{-24.7}$                 | 73.9+85.7                              |
| $\pi_1/\eta_1 \to K_1(1270)\bar{K} + c.c.$      | _                                      | <u> </u>                               | $14.6^{+19.8}_{-14.6}$                 |
| $\pi_1/\eta_1 \to K^*(892)\bar{K}^*(892)$       | _                                      |                                        | $0.08^{+0.39}_{-0.08}$                 |
| Sum                                             | $530^{+540}_{-330}$                    | $120^{+160}_{-110}$                    | $100^{+110}_{-80}$                     |



- Method of the QCD sum rules
- > Numerical analyses
- Decay behavior

## Summary

## Summary

- We calculate the masses of forty-four single-gluon hybrid states with the quarkgluon contents  $\overline{q}qg$  (q = u/d) and  $\overline{s}sg$ .
- Our results support the interpretations of the  $\pi_1(1600)$  and  $\eta_1(1855)$  as the hybrid states  $|\bar{q}qg; 1^-1^{-+}\rangle$  and  $|\bar{s}sg; 0^+1^{-+}\rangle$ , respectively.
- Considering the uncertainties, our results suggest that the  $\pi_1(1600)$  and  $\eta_1(1855)$  may also be interpreted as the hybrid states  $|\bar{q}qg; 1^-1^{-+}\rangle$  and  $|\bar{q}qg; 0^+1^{-+}\rangle$ , respectively.
- To differentiate these two assignments and to verify whether they are hybrid states or not, we propose to examine the  $a_1(1260)\pi$  decay channel in future experiments.

## **Thanks for your attention !**