

Experimental Study of Strangeonium Spectrum at BESIII

张亚腾 郑州大学

2025年轻强子专题研讨会 2025年5月8日-12日安阳

Hadron Physics, a cornerstone of our understanding of the strong interaction of quarks and gluons as described by QCD, which is primarily responsible for holding the nuclei of atoms together. Nuclei: Dominant part of visible matter in the universe.

- How are hadrons formed from quarks?
- What is the origin of confinement?
- How is the mass generated in QCD?

Light Meson

- ✓ α_s ~1, Occurring in the non-perturbative regime of QCD, perturbative techniques fail.
- Challenges for both theoretical analyses and experimental investigations.
- Alternative theoretical tools often model dependent or very computational expensive
- Highly populated spectrum: many overlapping, interfering, mixing or distorted states
 2

- Quark mode:
- MesonsBaryons
- New forms of hadrons

Physics report 873 (2020) 1-154

- Multi-ways to produce conventional and exotic mesons:
- Direct production of vector states (Scan, ISR)
 Charmonium decays
- ✓ Two-photon scattering

Hadron Spectroscopy: Precision SM tests & rare phenomena

The study of strangeonium is of particular interest since they are a bridge between the light u, d quarks and the heavy c, b quarks

- Contribution to hadron spectroscopy
- Analogy to heavy flavour vector meson, exotic hadron

- > Compared with $c\bar{c}$ and $b\bar{b}$, $s\bar{s}$ is a terra incognita
- Only a small fraction of the predicted strangeonium is confirmed

BEPCII&BESIII

BESIII

- Cover 93% of full solid angle
- 1.0 T supercondacting solenoid
- Momentum resolution: 0.5% at 1 GeV/c
- Energy resolution: 2.5%(5%) at 1 GeV/c in the barrel (end cap)
- Time resolution: 68(60) ps in the barrel (end cap)

BESIII Data Samples

Data sets collected so far include:

- > $10 \times 10^9 \text{ J/}\psi$ events
- > 2.7 ×10⁹ ψ (3686) events
- \succ 20 fb⁻¹ ψ (3770)
- Scan data [1.84, 3.08] GeV; [3.735, 4.600] GeV, 143 energy points, ~ 2.0 fb⁻¹
- ➤ Large data sets for XYZ study ~22 fb⁻¹
- Entangled hadron pair-productions near thresholds

- > Only the lightest axial-vector state $h_1(1380)$ ($h_1(1415)$ PDG) observed
- > More excitations, e.g., $h_1(2P)$ and $h_1(3P)$, still **missing** in experiment
- Fully-strange tetraquarks in same mass region and same final states predicted in theory

Observation of $h_1(1380)$ in the $J/\psi \rightarrow \eta' KK\pi$ decay

> Measurement of $J/\psi \rightarrow \eta' KK\pi$ performed with 1.3 billion J/ψ events

> $h_1(1380)$ observed in $M(KK\pi)$ with >10 σ statistical significance

 $M = 1423.2 \pm 2.1 \pm 7.3 \text{ MeV/c}^2$ $\Gamma = 90.3 \pm 9.8 \pm 17.5 \text{ MeV}$

Mass (MeV/c²) (1 ¹ P ₁)	Model	
1470	Relativized quark model	
(1457±11) or (1490±5)	Non relativistic quark mode	
1495.18±8.82	h ₁ (1170)-h ₁ (1380) mixing	
1511	Constituent quark model	

9

Study of the decay $J/\psi \rightarrow \phi \pi^0 \eta$

$h_1(1900)$

- Amplitude analysis of $J/\psi \rightarrow \phi \pi^0 \eta$ is performed with 10 billion J/ψ events.
 - Two new resonances in $M(\phi \eta)$ observed for the first time.

•
$$h_1(1900) J^{PC} = 1^{+-}$$

 $M = 1908 \pm 6 {}^{+8}_{-4} MeV/c^2$
 $\Gamma = 175 \pm 13 {}^{+7}_{-16} MeV$
• $X(2000) J^{PC} = 1^{--}$
 $M = 1992 \pm 12 {}^{+15}_{-6} MeV/c^2$
 $\Gamma = 132 \pm 22 {}^{+17}_{-4} MeV$

 $h_1(1900)$ consistent with $h_1(2P)$ theoretical prediction

No structure around 1.4 GeV in $\phi \pi^0$ invariant spectrum observed!

Study of the decay $J/\psi \rightarrow \phi \pi^0 \eta$

Phys. Rev. D 110, 112014 (2024)

- ► The $f_0(980) a_0(980)^0$ mixing signal in J/ $\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980)^0$ and the corresponding electromagnetic decay J/ $\psi \rightarrow \phi a_0(980)^0$ measured with improved precision.
- > The mixing intensity of $f_0(980) a_0(980)^0 (\xi_{fa})$ is calculated to be (0.86 ± 0.04 ± 0.25)%.

Process	M (MeV/ c^2)	Γ (MeV)	fit fraction(%)	$\mathcal{B}(10^{-6})$	Sig. (σ)
$\phi(1680)\pi^{0}$	$1663 \pm 5^{+16}_{-4}$	$159 \pm 15^{+11}_{-11}$	14.64 ± 0.56	$6.66 \pm 0.26^{+1.1}_{-1.0}$	32.3
$X(2000)\pi^{0}$	$1992 \pm 12^{+15}_{-6}$	$132 \pm 22^{+17}_{-4}$	4.05 ± 0.44	$1.70 \pm 0.19^{+0.48}_{-0.13}$	13.2
$h_1(1900)\pi^0$	$1908 \pm 6^{+8}_{-4}$	$175 \pm 13^{+7}_{-16}$	20.76 ± 0.84	$8.44 \pm 0.35^{+1.4}_{-1.2}$	30.1
$\phi a_0(980)_{\rm EM}$	_	_	9.75 ± 0.58	$3.24 \pm 0.20^{+0.52}_{-0.22}$	19.9
$\phi a_0(980)_{\rm mix}$	_	—	7.33 ± 0.35	$2.74 \pm 0.13^{+0.15}_{-0.16}$	31.6

Study of the decay $\psi(3686) \rightarrow \phi \eta \eta'$

arXiv: 2410.05736, accepted by PRL

Resonance	M (MeV/c^2)	$\Gamma (MeV)$
$h_1(3P)$	2435 [4]	269 [4]
$h_1(3P)$	2449 [8]	N/A
$h_1(3P)$	2100 [12, 13]	N/A
$h_1(3P)$	2490 [9]	N/A
$h_1(3P)$	2398 [10]	N/A
$h_1(3P)$	$2495.51{\pm}1.46$ [11]	N/A
$h_1(4P)$	2340 [12, 13]	N/A
$T_{(ss\bar{s}\bar{s})1+-}$	2323 [26]	N/A
$T_{(ss\bar{s}\bar{s})1+-}$	1960 [27]	N/A
$T_{(ss\bar{s}\bar{s})1^{+-}}$	2000^{+100}_{-90} [28]	N/A
This work	$2316\pm9\pm30$	$89\pm15\pm26$

$h_1(2300)$

- > Amplitude analysis of $\psi(3686) \rightarrow \varphi \eta \eta'$ is performed with 2.7 billion psi(3686) events.
- New resonances in M(φη) observed for the first time.

▶ $h_1(2300)$ J^{PC} = 1⁺⁻

 $M = 2316 \pm 9 \pm 30 MeV/c^2$ $\Gamma = 89 \pm 15 \pm 26 MeV$

- > Systematic discrepancy in the mass of $h_1(3P)$ in theory
- For the T(ssss) hypothesis, need more theoretical calculations!

Vector Strangeonium

- > More excitations, e.g., $\phi(3S)$, still **missing** in experiment
- $\succ \phi(2170)$, containing strange quarkonium, is controversial

Measurement of the $e^+e^- \to K^0_S \ K^0_L \pi^0$ and $e^+e^- \to K^+ \ K^- \pi^0$ cross sections

Measurement of the $e^+e^- \to K^0_S \ K^0_L \pi^0$ and $e^+e^- \to K^+ \ K^- \pi^0$ cross sections

- > Amplitude analysis of $e^+e^- \rightarrow K_S^0 K_L^0 \pi^0$ from $\sqrt{s} = 2.000$ to 3.080 GeV is performed.
- Dominant component: $K^*(892)^0 \overline{K}^0$, $K_2^*(1430)^0 \overline{K}^0$
- Resonance in $K^*(892)^0 \overline{K}{}^0$: 3.2 σ
 - $M = 2164.7 \pm 9.1 \pm 3.1 \text{MeV}/c^2$ $\Gamma = 32.4 \pm 21.0 \pm 1.8 \text{ MeV}$
- Amplitude analysis of $e^+e^- \rightarrow K^+ K^-\pi^0$ from $\sqrt{s} = 2.000$ to 3.080 GeV is performed
- Dominant component: $K^{*+}(892)K^{-}, K_{2}^{*+}(1430)K^{-}$
- Resonance in $K_2^{*+}(1430)K^-$: 7.1 σ

M = 2190 ± 19 ± 37 MeV/c² Γ =191 ± 28 ± 60 MeV

 $\mathbf{R} = \frac{B(K^0 \overline{K}^{0'})}{B(K^{\pm} \overline{K}^{\mp'})}: \sim 30 \text{ for } K^*(892)K, \sim 0.25 \text{ for } K_2^*(1430)K$

No significant $\phi(2170)$ in $K^*(892)^0 \overline{K}^0$, but in $K_2^{*+}(1430)K^{-1}$

Measurement of the $e^+e^- \rightarrow \omega\eta$ and $e^+e^- \rightarrow \omega\eta'$ cross sections

➤ Measurement of cross section of $e^+e^- → ωη$ from √s = 2.000 to 3.080 GeV is performed

Resonance : 6.2σ M = 2176 \pm 24 \pm 3 MeV/c² Γ = 89 + 50 + 5 MeV

13.30 \pm 6.06 \pm 3.61, 2.39 \pm 1.63 \pm 1.01

 $4.58 \pm 2.21 \pm 1.34$, $6.95 \pm 4.60 \pm 2.83$

Measurement of cross section of $e^+e^- → ωη'$ from √s = 2.000 to 3.080 GeV is performed

Resonance : 9.6σ

 $M = 2153 \pm 30 \pm 31 \text{ MeV/c}^2$ $\Gamma = 167 \pm 77 \pm 7 \text{ MeV}$

Discrepancy with the ratio predicted by lattice QCD, $\begin{array}{c} 0.32\\ 16\end{array}$

Measurement of $e^+e^- ightarrow \phi \pi^+\pi^-$ cross sections

Dominant component: $\phi f_0(980)$

Measurement of $e^+e^- ightarrow \phi \pi^+\pi^-$ cross sections

- Resonances at 2.1 and 2.4 GeV
- Fits to the cross sections of $e^+e^- \rightarrow \phi \pi^+\pi^-$ within full $M(\pi^+\pi^-)$ range (σ) and within $M_{\pi^+\pi^-} \in [0.85, 1.1]$ (σ^*) GeV/c²

Parameter	σ	σ^*	
$M_r(\phi(2170))$	2171 ± 12	2178 ± 20	
$\Gamma_r(\phi(2170))$	115 ± 28	140 ± 36	
$\phi_{\rm P}^{\rm D}$	1.01 ± 0.14	1.13 ± 0.06	
$\phi_{\rm P}^{\rm C}$	-1.87 ± 0.16	-1.71 ± 0.12	
χ^2/ndf	28/15	23/15	

No significant $\phi(2170)$ observed in the cross section line shape of $e^+e^- \rightarrow \phi \pi^+\pi^-$ with $M_{\pi^+\pi^-} \notin [0.85, 1.1] \text{GeV}/c^2$

Summary

- BESIII has a rich and fruitful program of hadron physics
- New resonances h₁(1900) and h₁(2300) are observed for the first time.
- How to arrangement and understand those axel vector states?
- ✓ Where vector state $\phi(3S)$?
- ✓ $\phi(2170)$ nature is still controversial

Efforts from theoretical and experimental sides are desirable!

Thanks! 19

 $\phi f_0(980)$

 $K_2(1430)K$

K(1460)K

 $K_2(1430)K$

K^{*}(892)K ΦK⁺K⁻

 $K^{+}K^{-}/K_{S}K_{L}$

K*(892)K*(892)

φη/φη'