### Double-charmonium scattering from lattice QCD

#### 孟雨 (郑州大学)

Based on Y.M et al, EPJC 85,458(2025)

2025年轻强子专题研讨会

2025年5月8-12日,河南·安阳

#### Motivation



• In 2020, LHCb first observed a narrow structure X(6900) in the di- $J/\psi$  spectrum Sci.Bull.65 (2020) 23 • In 2023, ATLAS observed X(6900) in di- $J/\psi$  channel and X(6900),X(7200) in  $J/\psi + \psi(2S)$  channel

PRL131,151902(2023)



CMS update(2025),Huzhen's talk on 10th XYZ Workshop

- Spin parity analysis  $\Rightarrow J^{PC} = 2^{++}$
- With Run 3 data, first observation of interference

|   | BW1 (MeV) | BW2 (MeV) | BW3 (MeV) |
|---|-----------|-----------|-----------|
| m | 6588 ± 19 | 6849 ± 12 | 7179 ± 10 |
| Г | 454 ± 74  | 136 ± 18  | 67 ± 18   |

 In 2024, CMS found 3 significxant structures, named as X(6600), X(6900) and X(7200) PRL132,111901(2024)

#### What is the nature of X(6900)?

- Tetraquark, compact or molecular
- Dynamical effects PRL126,132001(2021)
- Gluonic tetracharm PLB,817,136339(2021)

Is there compact bound state below di-heavy-quarkonium threshold ?

- Yes X.-K.Dong et al,Sci.Bull66,2462(2021) · · ·
- No PRD97,054505(2018)[lattice] · · ·

- X(6900): very challenging for current lattice QCD almost impossible
  - Unknown internal structure
  - Very dense energy levels
  - Coupled-channel effect
- $\bullet$  Basic information of di-charmonium scattering(Lattice QCD)
  - $\rightarrow$  inputs for phenomenological studies
    - Constrain various phenomenological models
    - Improve the predictive power of phenomenology
- Experiments+phenomenology+lattice QCD  $\rightarrow$  possible

Target :  $0^+ \eta_c \eta_c$  and  $2^+ J/\psi J/\psi$  scattering lengths

- K.G.Wilson, PRD 10, 2445(1974)
- Idea: put QCD on 4-d lattice
  - $\bullet \ \mathsf{Quark} \ \mathsf{field} \to \mathsf{site}$
  - $\bullet~\mbox{Gauge filed} \to \mbox{link}$



格点量子色动力学在中国[J].现代物理知识,2020,32(01):36-44.

- "格点场论既是世界观(非微扰的定义)又是方法论(非微扰的计算)" 刘川,《格点量子色动力学导论》
  - 世界观 ⇒ Non-perturbative definition of QCD, natural ultraviolet and infrared truncation
  - 方法论  $\Rightarrow$  Non-perturbative calculation of QCD, Monte-Carlo simulation

| Ens | a(fm)      | $V/a^4$          | $a\mu_{sea}$ | $N_{\rm conf} \times T_s$ | $m_{\pi}(\text{MeV})$ |
|-----|------------|------------------|--------------|---------------------------|-----------------------|
| a98 | 0.098(3)   | $24^3 \times 48$ | 0.0060       | $236 \times 48$           | 365                   |
| a85 | 0.085(2)   | $24^3 \times 48$ | 0.0040       | $200 \times 48$           | 315                   |
| a67 | 0.0667(20) | $32^3 \times 64$ | 0.0030       | $200 \times 64$           | 300                   |

- $N_f = 2$  twisted-mass guage configuration
- Dimensionless quantity  $m_{J/\psi}a^{\Gamma}$  in the continuous limit
- Smeared stochastic  $Z_4$ -noise for the propagator
- Charm quark mass is tuned by physical  $J/\psi$  mass
- Same setup is used for  $\eta \rightarrow 2\gamma$ [Y.M et al, Sci.Bull68,1880(2023)] and  $J/\psi \rightarrow \gamma \eta_c$ [Y.M et al, PRD111,014508(2025)], which is verified by BESIII experiment [PRL134,181901(2025)]

• Method: Lüscher finite volume formula

$$\delta E^{\Gamma} = -\frac{4\pi a^{\Gamma}}{mL^3} \left[ 1 + c_1 \frac{a^{\Gamma}}{L} + c_2 \left( \frac{a^{\Gamma}}{L} \right)^2 + \mathcal{O}(L^{-3}) \right], \Gamma = A_1, E, T_2$$

- Single-particle operator:  $\mathcal{P}(t) = \bar{c}\gamma_5 c(t), \mathcal{V}_i(t) = \bar{c}\gamma_i c(t)$
- Two-particle operator

$$\mathcal{O}^{A_1}(t) = \mathcal{P}(t)\mathcal{P}(t)$$
  

$$\mathcal{O}^E(t) = \left\{ \frac{1}{\sqrt{2}} \left[ \mathcal{V}_1(t)\mathcal{V}_1(t) - \mathcal{V}_2(t)\mathcal{V}_2(t) \right], \\ \frac{1}{\sqrt{2}} \left[ \mathcal{V}_2(t)\mathcal{V}_2(t) - \mathcal{V}_3(t)\mathcal{V}_3(t) \right] \right\}$$
  

$$\mathcal{O}^{T_2}(t) = \left\{ \mathcal{V}_2(t)\mathcal{V}_3(t), \mathcal{V}_3(t)\mathcal{V}_1(t), \mathcal{V}_1(t)\mathcal{V}_2(t) \right\}$$

F.R.López, A.Rusetsky and C.Urbach, PRD98, 014503(2018)

## Energy shift

• Two-point function

$$C_{\eta_c}^{(2)}(t) = \frac{1}{T} \sum_{t_s} \langle \mathcal{P}(t+t_s) \mathcal{P}^{\dagger}(t_s) \rangle$$
$$C_{J/\psi}^{(2)}(t) = \frac{1}{T} \sum_{t_s} \langle \mathcal{V}_i(t+t_s) \mathcal{V}_i^{\dagger}(t_s) \rangle$$

• Four-point function

$$C_{\Gamma}^{(4)}(t) = \frac{1}{T} \sum_{t_s} \langle \mathcal{O}^{\Gamma}(t+t_s) \left( \mathcal{O}^{\Gamma}(t_s) \right)^{\dagger} \rangle$$

• Ratio

$$\begin{aligned} R^{\Gamma}(t) &= \frac{C_{\Gamma}^{(4)}(t) - C_{\Gamma}^{(4)}(t+1)}{(C_{h}^{(2)}(t))^{2} - (C_{h}^{(2)}(t+1))^{2}} \\ &\to A_{R}[\cosh(\delta E^{\Gamma}t') + \sinh(\delta E^{\Gamma}t') \coth(2m_{h}t')], \ t' = t + 1/2 - T/2 \end{aligned}$$



 $\bullet$  Type-R and type-V are supposed to be highly suppressed

- V in  $J/\psi J/\psi$ :  $\alpha_s^3(2m_c)$ • V in  $\eta_c \eta_c$ :  $\alpha_s^2(2m_c)$
- R in J/ψJ/ψ: α<sub>s</sub>(2m<sub>c</sub>)
   R in η<sub>c</sub>η<sub>c</sub>: α<sub>s</sub>(2m<sub>c</sub>)



| Ensemble   | Г                               | $A_1$      | E          | $T_2$      |
|------------|---------------------------------|------------|------------|------------|
| a98        | $\delta E^{\Gamma}[\text{MeV}]$ | 0.59(07)   | 1.07(17)   | 1.18(14)   |
| a85        | $\delta E^{\Gamma}[\text{MeV}]$ | 1.40(11)   | 2.43(25)   | 2.39(20)   |
| a67        | $\delta E^{\Gamma}[\text{MeV}]$ | 1.42(07)   | 2.50(20)   | 2.57(15)   |
| a98        | $m_{J/\psi}a^{\Gamma}$          | -0.705(81) | -1.22(17)  | -1.34(14)  |
| a85        | $m_{J/\psi}a^{\Gamma}$          | -1.042(72) | -1.70(15)  | -1.68(12)  |
| a67        | $m_{J/\psi}a^{\Gamma}$          | -1.202(51) | -1.97(13)  | -2.01(10)  |
| Cont.Limit | $m_{J/\psi}a^{\Gamma}$          | -1.63(14)  | -2.63(31)  | -2.60(25)  |
| Cont.Limit | $a^{\Gamma}[\mathrm{fm}]$       | -0.104(09) | -0.168(20) | -0.165(16) |
|            |                                 |            |            |            |

• Asymptotic behavior:  $T \gg t$ ,  $\delta E/2m_{\bar{c}c} \ll 1$ ,  $R^{\Gamma}(t) \propto \cosh(\delta E^{\Gamma}t') + \sinh(\delta E^{\Gamma}t') \coth(2m_ht') \rightarrow e^{-\delta E^{\Gamma}t}$ 

# S-wave scattering length



• No evidence of  $\eta_c \eta_c$  and  $J/\psi J/\psi$  with mass below the noninteracting thresholds in the  $0^+$  and  $2^+$  channels  $[\delta E > 0]$ 



| Ensemble | $\delta E[\text{MeV}]$ | $A_1$      | E          | $T_2$      |
|----------|------------------------|------------|------------|------------|
| a98      | (D)                    | -0.63(07)  | -1.17(16)  | -1.06(12)  |
|          | (C)                    | -7.59(16)  | -5.82(24)  | -5.72(24)  |
|          | (D)+(C)                | 0.59(07)   | 1.07(17)   | 1.18(14)   |
|          | (D)                    | -1.12(11)  | -1.85(24)  | -1.73(18)  |
| a85      | (C)                    | -14.81(22) | -10.36(41) | -9.97(38)  |
|          | (D)+(C)                | 1.40(11)   | 2.43(25)   | 2.39(20)   |
|          | (D)                    | -1.10(07)  | -2.14(17)  | -2.08(13)  |
| a67      | (C)                    | -15.38(13) | -11.57(28) | -11.39(27) |
|          | (D)+(C)                | 1.42(07)   | 2.50(20)   | 2.57(15)   |





• The interference of the two diagrams leads to a repulsive interaction.

•  $\overline{bbbb}$ , soft gluon exchange and  $\overline{q}q$  exchange PRD97,054505(2018)

- 2+1+1 flavors from MILC collaboration,  $a \sim [0.06, 0.12] {
  m fm}$
- Repulsive interaction in any channel  $(0^{++}, 1^{+-}, 2^{++})$
- Individual diagram leads to attractive interaction
- $\Omega_{ccc}\Omega_{ccc}$  PKU&HALQCD,PRL127,072003(2021)
  - 2+1 flavor O(a)-improved Wilson action,  $a\sim 0.085 \mathrm{fm}$
  - V(r) replusive at short range and attractive at midrange( $^1S_0$ )
  - It supports a loosely bound state  $~[\delta E < 0]$



 $\overline{b}\overline{b}bb$ 

- We present first-principle calculation on the scattering length of  $\eta_c \eta_c$  and  $J/\psi J/\psi$  in  $0^+$  and  $2^+$  channels
- No evidence of  $\eta_c \eta_c$  and  $J/\psi J/\psi$  with mass below the noninteracting thresholds in both channels
- We observe sizeable discretization effect, weak repulsive interaction in  $0^+$   $\eta_c\eta_c$  and  $2^+$   $J/\psi J/\psi$  systems
- The scattering lengths are obtained as

 $a_{\eta_c\eta_c}^{0^+} = -0.104(09) \text{ fm}, \ a_{J/\psi J/\psi}^{2^+} = -0.165(16) \text{ fm}$ 

Thank you!