Trk/Vix & PID

Trk

Low pT performance needs to be understood; working in progress...

a(p .r‘re.t_- - p Ttru[,h)/ p Tt.".'..' th

0.027 -
0.024 -

0.021 ~
0.018 A

0.015 -
0.012 ~

0.009 -

0.006 -

0.003 -+

0.002 -

® vxd + itk + tpc + otk
vxd + itk + tpc

vxd + itk + otk

vxd + itk

fpc

35°

0.001

L ' L] L] L] L] L L] L L] '

101 104
p Ttruth (G eV)

Number of tracks

1000 -

800 -

600 -

400 ~

200 A

1GeV, 85°

—0.010

1 vxd + itk + tpc + otk
vxd + itk + tpc
1 vxd + itk + otk
1 vxd + itk
[tpc
- "1L
I‘r L
||
“ shoulder
‘l' ' LAl
wa o
o " o
—0.005 0.000 0.005 0.010
Apt/pT

PID

* K/Piseparation @ p = 12GeV, cos(f) = 0.3; Investigation for a better understanding of the differences is
ongoing...

* Switch attention to development of new algorithm

TDR Truth (Garfield, dNdx) Reference (Geant4, dEdx[Mev-'g'em?])
Pi K Pi K
mean 36.0 32.2 1169 1.003
sigma 0.52 0.50 0.029 0.025
sigma/mean 0.014 0.015 0.025 0.025
separation ~ b5 sigma ~ 4.3 sigma
TDR Rec (Garfield, dNdx) Reference Rec
Pi K Pi K
mean 58.1 53.6
sigam 1.37 1.39 e 0,20, 50, 100% woree than trut
sigma/mean 0.024 0.025
separation ~ 2.3 sigma ~4.3, 3.6, 2.8, 2.1 sigma

@)

Primary vertex reconstruction

* A package has been developed which takes “CompleteTracks” as its input and produces

vertex as its output
[llustration for vertex finding

1. Feed all tracks into the algorithm for now; selections

based on such as chiz, do/zo, etc. will be applied in \ (\
here soon. g .
\
2. Vertex finder S \ N

* For each track pair, determine its geometric centre TN
and select the one with the highest compatibility
with all other tracks as the initial vertex.

3. Vertex fitter § / / v

* Propagate all trajectories to the initial vertex;
maximise the compatibility between this vertex and
all tracks using Minuit2 (floating x, y, z)

Primary vertex reconstruction

* A package has been developed which takes “CompleteTracks” as its input and produces

vertex as its output

1. Feed all tracks into the algorithm for now; selections
based on such as chiz, do/zo, etc. will be applied in
here soon.

2. Vertex finder

* For each track pair, determine its geometric centre
and select the one with the highest compatibility
with all other tracks as the initial vertex.

3. Vertex fitter

* Propagate all trajectories to the initial vertex;
maximise the compatibility between this vertex and

all tracks using Minuit2 (floating x,y, z)

CEPCSW/Reconstruction/Vertexing/src/Vertexing.cpp
can be configured after FullTrackginAlg in SW

CEPCSW/Reconstruction/Vertexing/src/HelixPlus.cpp
inherits from made-ready HelixClass; need to import

Minuit2 lib. from external

VEX_y (mm)

—0.005 A
—0.010 A
—0.015 A

_0-020 I I I 1 1 I 1
—0.020-0.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020

Number of vertices

0.020

Performance (preliminary)

* ParticleGun for 1k mu-, mu+ pairs withp = 1 ~ 100GeV, 8 = 35° ~ 145°

3.0

0.015 A

0.010 A

0.005 A

0.000 A

vertex (x,y)

- 2.5

vitx_x (mm)

vertex (y)

60 -

50 -

40 -

30 A

20 4

10 ~

[1

h

0

vtx_y (mm)

—0.0100-0.0075-0.0050-0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

vertex (X)M -

-

—0.0100-0.0075-0.0050-0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

vitx_x (mm)

vertex (z)

g

—0.0075 -0.0050 —0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

vix z (mm)

6

* Summary & To do

* 1sigma ~ 3 um seems reachable at first
glance

* Need to check the performance in
more details

* Connect to EDMghep::vertex

* Switch to secondary vertex
reconstruction

* A more sophisticated algorithm might
be preferable in complex scenarios
with jets

