Trk/Vix & PID



Trk

Low pT performance needs to be understood; working in progress...
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PID

* K/Piseparation @ p = 12GeV, cos(f) = 0.3; Investigation for a better understanding of the differences is
ongoing...

* Switch attention to development of new algorithm

TDR Truth (Garfield, dNdx) Reference (Geant4, dEdx[ Mev-'g'em? ])
Pi K Pi K
mean 36.0 32.2 1169 1.003
sigma 0.52 0.50 0.029 0.025
sigma/mean 0.014 0.015 0.025 0.025
separation ~ b5 sigma ~ 4.3 sigma
TDR Rec (Garfield, dNdx) Reference Rec
Pi K Pi K
mean 58.1 53.6
sigam 1.37 1.39 e 0,20, 50, 100% woree than trut
sigma/mean 0.024 0.025
separation ~ 2.3 sigma ~4.3, 3.6, 2.8, 2.1 sigma

@)




Primary vertex reconstruction

* A package has been developed which takes “CompleteTracks” as its input and produces

vertex as its output
[llustration for vertex finding

1. Feed all tracks into the algorithm for now; selections

based on such as chiz, do/zo, etc. will be applied in \ (\
here soon. g .
\
2. Vertex finder S \ N

* For each track pair, determine its geometric centre TN
and select the one with the highest compatibility
with all other tracks as the initial vertex.

3. Vertex fitter § / / v

* Propagate all trajectories to the initial vertex;
maximise the compatibility between this vertex and
all tracks using Minuit2 ( floating x, y, z )
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with all other tracks as the initial vertex.

3. Vertex fitter

* Propagate all trajectories to the initial vertex;
maximise the compatibility between this vertex and

all tracks using Minuit2 ( floating x,y, z )

CEPCSW/Reconstruction/Vertexing/src/Vertexing.cpp
can be configured after FullTrackginAlg in SW

CEPCSW/Reconstruction/Vertexing/src/HelixPlus.cpp
inherits from made-ready HelixClass; need to import

Minuit2 lib. from external
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Performance (preliminary )

* ParticleGun for 1k mu-, mu+ pairs withp = 1 ~ 100GeV, 8 = 35° ~ 145°
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* Summary & To do

* 1sigma ~ 3 um seems reachable at first
glance

* Need to check the performance in
more details

* Connect to EDMghep::vertex

* Switch to secondary vertex
reconstruction

* A more sophisticated algorithm might
be preferable in complex scenarios
with jets



