µSR Signatures of Pseudogap and Critical Spin Dynamics in the Kondo Condensate of P-Doped Silicon

Kwang-Yong Choi Sungkyunkwan University January 10, 2025

Si: platforms for semiconductor and qantum technologies

Si:P Model system to explore Anderson localization + Mott physics

Kondo effect in degenerately P-doped Si (Si:P)

Degenerately doped Si: doping level, typically above 10¹⁹ cm⁻³ A 10⁻⁵ fraction of the total impurities induce unscreened localized moments. **Non-degenerately doped Si**: a doping range of 10¹⁴-10¹⁸ cm⁻³

A mean distance between the local moments is less than 1 μ m, comparable the size of a Kondo cloud.

Optical conductivity of Si:P

 $4\pi ne^2$

 m_e

Two-mode Drude model

$$\sigma_{1}(\omega) = \frac{\omega_{p,n}^{2}}{4\pi} \frac{1/\tau_{n}}{\omega^{2} + (1/\tau_{n})^{2}} + \frac{\omega_{p,b}^{2}}{4\pi} \frac{1/\tau_{b}}{\omega^{2} + (1/\tau_{b})^{2}}$$
The total plasma frequency

$$\omega_{p,t} = \sqrt{\omega_{p,n}^{2} + \omega_{p,b}^{2}} = \frac{1}{2\pi} \frac{1}{$$

 Two-mode Drude model
 → Two scattering channels delocalized and localized electrons

ESR signatures of spin correlations in Si:P

In the diffusionless limit with $I \le A/B \le 2.6$ and $T_D/T_2 \gg I$

 \rightarrow The electron spin relaxation times are much shorter than the timescales associated with the electron's diffusive motion.

$$\frac{d[(1-\alpha)\chi''+\alpha\chi']}{dH} = \chi_0 H_{\rm res} \gamma^2 T_2^2 \left[\frac{2(1-\alpha)x}{(1+x^2)^2} + \frac{\alpha(1-x^2)}{(1+x^2)^2} \right]$$

ESR evidence of spin fluctuations in Si:P

H.-A. Krug von Nidda et al., Appl. Magn. Reson. 12, 287 (97)

$$\Delta g \propto N(E_{\rm F}) J_{{\rm ce}-S}(q=0) \qquad \Delta H \propto \left\langle J_{{\rm CE-ls}}^2(q) \right\rangle N^2(E_{\rm F}) T,$$

 J_{ce-S} is the exchange integral between the conduction electrons and the local moments.

 $N(E_{\rm F})$ is the electronic density of states at the Fermi energy $E_{\rm F}$.

```
Differential resistance R_d of Si:P
```


The increase in ln(T) and the subsequent decrease in the resistivity at B=0 is reminiscent of those of a Kondo lattice compound with disorder.

H. Im et al., Nat. Phys. **19**, 676 (23)

Tunneling DOS spectroscopy of Si:P

Above 160 mK, the U-shaped pseudogap with the side peaks changes into a $V^{1/2}$ -type Altshuler–Aronov gap (paramagnetic, disordered Fermi liquid).

Field-temperature phase diagram of Si:P

In randomly disordered many-impurity Kondo systems, the BCS-like pseudogap without hidden superconductivity implies macroscopic coherence, called **Kondo condensation**.

SCIENCE ADVANCES | RESEARCH ARTICLE

CONDENSED MATTER PHYSICS

Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of YBa₂Cu₃O_y

Jian Zhang,¹ Zhaofeng Ding,¹ Cheng Tan,¹ Kevin Huang,¹* Oscar O. Bernal,² Pei-Chun Ho,³ Gerald D. Morris,⁴ Adrian D. Hillier,⁵ Pabitra K. Biswas,⁵ Stephen P. Cottrell,⁵ Hui Xiang,⁶ Xin Yao,^{6,7} Douglas E. MacLaughlin,⁸ Lei Shu^{1,7†}

Table 1. Correlation times τ_c and rms muon local fields B_{loc}^{rms} from muon spin relaxation rates in YBa₂Cu₃O_y.

у	Temperature (K)	τ _c (ns)	B ^{rms} _{loc} (mT)
6.72	80	5(2)	0.92(19)
6.77	85	10(3)	0.87(10)
6.83	93	25(10)	0.37(6)

 $P_z^{\rm TF}(t) = P_z(0) \exp(-\lambda_{\rm TF} t) \cos(f_\mu t + \phi) \qquad \text{S. Lee et al., submitted (25)}$

Magnetic origin of pseudogap in the Kondo cloud condensation

introduce the charge neutral scalar field $\varphi = \langle c_{\uparrow} f_{\downarrow}^{+} - c_{\downarrow} f_{\uparrow}^{+} \rangle$, where *c* is an itinerant electron and *f*⁺ is an ion impurity with a net spin of 1/2. Kondo condensation is the configuration in which φ is non-vanishing.

Critical spin fluctuations are a control parameter of the charge coherence of overlapping Kondo singlets.

Summary

• The critical spin fluctuations of the Kondo condensate state act as a driving force for pseudogap formation within inhomogeneous Kondo clouds.

• Our findings broaden the scope of pseudogap phenomena, extending their relevance into the realm of doped semiconductors.

Thanks to my collaborators

Wonjun Lee and Suheon Lee (IBS, Pohang; µSR)

Sangeun Cho and Hyunsik Im (Dongguk University: tunneling spectroscopy)

Jonas A. Krieger, Christoper Baines, Thomas J. Hicken and Hubertus Luetkens (PSI)

Yugo Oshima (RIKEN; ESR)

Jungseek Hwang (SKKU; optical spectroscopy)