Negative muon beamline and applications

High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science (IMSS) Muon Science Division

J-PARC Materials and Life Science Division (MLF) Muon Section

> Soshi Takeshita 竹下 聡史

World's Meson Factories

曾播造科学研究所

			~*		50				
TRIUMF		RAL	• [P	SI	C @ ~ ~				
World's Meson Facto	ries				-		Ĵ,	RC	NP
Pulse <u>J-PARC(MLF) :</u>	Japan	Facility	Туре	Power (W)	Energy (eV)	Current (A)	Freq. (Hz)	Width (s)	Day1
RAL(ISIS): DC	United Kingdom	J-PARC	Pulse	1.00M	3 G	333µ	25	100n	2008
PSI(SµS) : TRIUMF :	Switzerland - Canada	RAL	Pulse	160k	800M	200µ 2.4m	50	80n	1984
<u>RCNP(MuSIC)</u>	: Japan	TRIUMF		88k	530M	170u	23M	_	1909
https://en.wikipedia.org/wiki/World_map# /media/File:Blue_Marble_2002.png		RCNP	DC	0.4k	400M	1μ	19M	-	2010

2nd Workshop on Muon Science Technology and Industry

World's Meson Factories

			••• 		50				
TRIUMF	and the second s	RAL	• •	SI	E'		12	. 2-	PARC
World's Meson Facto	ries		Star 2	X		X		RC	NP
Pulse J-PARC(MLF):	Japan	Facility	Туре	Power (W)	Energy (eV)	Current (A)	Freq. (Hz)	Width (s)	Day1
RAL(ISIS):	United Kingdom	J-PARC	Pulse	1.00M	3G	333µ	25	100n	2008
PSI(SµS):	Switzerland	RAL	Pulse	160k	800M	200µ	50	80n	1984
RCNP(MuSIC)	: Japan	PSI	DC	1.4M	590M	2.4m	50M	-	1989
https://en.wikipedia.org/wiki/World_map#		TRIUMF RCNP	DC DC	88k 0.4k	520M 400M	170μ 1μ	23M 19M	-	1974 2010
/media/File:Blue Marble 2002.png	and the second s	Discourse and services of	Dept	- Contraction			ALCHOID COLO		

2nd Workshop on Muon Science Technology and Industry

World's Meson Factories

質構造手

			•• • . A		5				
TRIUMF World's Meson Facto	SNS ries	RAL		ST		E CSN	RAO	N J- RC	PARC NP
Pulse	lanan	Facility	Туре	Power (W)	Energy (eV)	Current (A)	Freq. (Hz)	Width (s)	Day1
	United Kingdom	SNS	Pulse	2.47M	1.3G	1.5 m	60	30n?	?
DC		J-PARC CSNS	Pulse Pulse	1.00M 500k	3G 1.6G	333µ 313µ	25 1	100n 150n	2008 2028
PSI(SµS):	Switzerland	RAL	Pulse	160k	800M	- 200µ	50	80n	1984
TRIUMF:	Canada	PSI	DC	1.4M	590M	2.4m	50M	-	1989
<u>RCNP(MuSIC)</u>	<u>: Japan</u>	RAON	DC	400k	600M	666µ	81M	-	?
		TRIUMF	DC	88k	520M	170µ	23M	-	1974
https://en.wikipedia.org/wiki/World_map# /media/Elle:Blue_Marble_2002_ppg		RCNP	DC	0.4k	400M	1µ	19M	-	2010

2nd Workshop on Muon Science Technology and Industry

The Position of the D-Line in Muon Facilities Worldwide

• Proton Energy and Pion Production Cross Section

R. Kadono (2016), Muon spin rotation method, Kyoritsu Shuppan.

2025/01/10

The world's highest intensity pulsed muon source

Facility	Energy	Current	π^- cross section	Potential efficiency	Target loss	Effective efficiency
J-PARC	3 GeV	333 µA	100 mb	33.3 µAb	5 %	1.66 µAb
RAL	800 MeV	200 µA	10 mb	2.0 µAb	5 %	0.1 µAb
PSI	590 MeV	2.4 mA	8 mb	19.2 µAb	18 %	3.46 µAb
TRIUMF	520 MeV	400 µA	6 mb	0.9 µAb	—	—
RCNP	400 MeV	1uA	3 mb	0.003 µAb	—	—

Variable momentum: D, U, H, (S)

BL	Area	μ+	μ-	Variable Pµ
D-Line	D1/D2	\bigcirc	\bigcirc	\bigcirc
U-Line	U1A/U1B	\bigcirc	×	\bigcirc
S-Line	S1/S2	\bigcirc	\triangle	\bigtriangleup
H-Line	H1	\bigcirc	\bigcirc	\bigcirc

5

The Position of the D-Line in Muon Facilities Worldwide

• Proton Energy and Pion Production Cross Section

R. Kadono (2016), Muon spin rotation method, Kyoritsu Shuppan.

2025/01/10

The world's highest intensity pulsed muon source

Variable momentum: D, U, H, (S)

BL	Area	μ+	μ-	Variable Pµ
D-Line	D1/D2	\bigcirc	\bigcirc	\bigcirc
U-Line	U1A/U1B	\bigcirc	×	\bigcirc
S-Line	S1/S2	\bigcirc	\triangle	\bigtriangleup
H-Line	H1	\bigcirc	\bigcirc	\bigcirc

6

MLF Muon Science Establishment (MUSE)

MLF Muon Science Establishment (MUSE)

2nd Workshop on Muon Science Technology and Industry

8

MLF Muon Science Establishment (MUSE)

The secondary beamline for transporting decay and surface muons ¹⁰

Instrument specifications (as of 2022) Beamline D-line was constructed at 2008. Magnetic kicker system (as of 2013) Warm bore long solenoid magnet (as of 2015) High power magnet for beam transport (Ongoing) Beam (sub) Surface, cloud and decay muons are available. Positive and negative muons are available. Variable momentum beam from 3 to 120 MeV/c Single and double pulse beam **Experimental areas** ■ D1: µSR (Spectrometer) D2: General purpose (Open geometry) ■ Staff Permanent staff: DL:ST, PS, D1:AK, WH, D2:IU, (PS) ■ Contracted staff: SD, SS, AH Total:8 persons

2025/01/10

•

- D-Line
 - Warm bore superconducting long solenoid (Pion decaying section)
 - The only beamline to use decay muon in MLF at the moment.

- D-Line
 - Warm bore superconducting long solenoid (Pion decaying section)
 - The only beamline to use decay muon in MLF at the moment.

- D-Line
 - Warm bore superconducting long solenoid (Pion decaying section)
 - The only beamline to use decay muon in M SC Solenoid nent.

• Beamline

- Merit
 - Pions decay within the solenoid (pions are filtered).
 - Change of transport mode
 - Electrons are filtered at the separator (Wien filter).
 - Reducing background components

- Application of negative muon at D-line
 - Variable momentum,i.e. Variable stopping range
 - =>Depth resolved analysis
 - Different muon lifetime for different elements
 - =>Elemental analysis
 - Nuclear capture
 - Muonic X-rays=>**Elemental analysis**
 - Soft-error in semiconductors
 - Clear muon site (no self diffusion)

2025/01/10

Non-destructive elemental analysis of a medicine bottle that cannot be opened

Non-destructive elemental analysis of return samples from asteroid Ryugu

- ✓ Need to know the elemental composition of the entire stone, including light elements such as C.
- Possibility of chemically unstable in the atmosphere

Muonic X-ray elemental analysis was employed as an initial analysis of Ryugu samples.

2019MS0

 T. Nakamura et al., Science379, eabn8671(2023).

 DOI:10.1126/science.abn8671

 stry

 2025/01/10

Technique to detect Li metal deposition in a Li-ion battery by muonic x-rays

Purpose

Graphite Anode

We have already confirmed that we can apply this technique to detect metallic Li. Recently we have started to apply this technique to a cell with multiple pairs of electrode.

2nd Workshop on Muon Science Technology and Industry

CaLi

Non-destructive depth-selective quantification method for sub-percent carbon contents in steel

Lithium transfer phenomena in all-solid-state lithium battery anode materials by positive and negative muons.

✓ When we probe diffusion of atom by muon, there is a possibility of self-diffusion in case of positive muon.

Succeeded in measure the Li diffusion constant by negative muon spin relaxation measurement.

https://doi.org/10.1021/acs.jpcc.2c02055

Summary

- D line
 - Both negative and positive muons are available.
 - (sub) Surface, cloud and decay muons are available.
 - Variable momentum beam from 3 to 120 MeV/c
 - Single and double pulse beam
- Research highlights
 - Non-destructive analysis of cultural heritages (which must not be broken)
 - Non-destructive analysis of the return samples from asteroid Ryugu

(as an initial analysis)

- Non-destructive analysis on Li ion batteries
- Soft errors in SRAM due to negative muons
- Non-destructive analysis for identification of trace elements in steels
- Diffusion constant measurement using Negative and positive muons

