Tracking Performance

Chenguang Zhang Chengdong Fu

1GeV, 85°

Current standalone TPC tracking resolution better than combined options at low pT region - could be due to different configurations of materials at simulation and reconstruction

- Investigation ongoing
 - e.g. checking also direction

Jet Performance

• Comparisons between tdr24.9.1 and tdr24.10.0 $|\cos\theta_{jet}| < 0.7 \& Match \& \Delta R < 0.6$

Release	process	$ZH \rightarrow \nu \nu gg$	$ZH \rightarrow \nu \nu bb$	$ZH \rightarrow \nu \nu cc$	$ZH \rightarrow \nu \nu u u$	$ZH \rightarrow \nu \nu dd$	$ZH \rightarrow \nu \nu ss$
CEPCSW _tdr24.9.1	BMR	(5.28 ± 0.19)%	(7.00 ± 0.34)%	(6.32 ± 0.20)%	(5.39 ± 0.16)%	(4.93 ± 0.18)%	(5.45 ± 0.22)%
	Efficiency	0.50	0.50	0.52	0.54	0.51	0.52
CEPCSW _tdr24.10.0	BMR	(4.98 ± 0.03)%	(6.48 ± 0.06)%	(5.64 ± 0.03)%	(4.85 ± 0.02)%	(4.94 ± 0.04)%	(5.56 ± 0.02)%
	Efficiency	0.57	0.56	0.57	0.57	0.57	0.56

Fangyi Guo, Yang Zhang, et. al.

- BMR ~ 5% in current CEPCSW release for barrel region
 - latest CyberPFA will deliver
 ~3.8% resolution, to be integrated into next release
 - endcap Ecal also planned for next release, but the memory explosion issue still to be fixed

Work ongoing for vertex, single jet performance (differential)

PID performance

$$\frac{\sigma_{Rec}/\mu_{Rec}}{\sigma_{Truth}/\mu_{Truth}} - 1 \sim 0.7$$

	TDR Truth (Garfield, dNdx)			
	Pi	К		
mean	36.0	32.2		
sigma	0.52	0.50		
sigma/mean	0.014	0.015		
separation	~ 5 sigma			
	TDR Rec (Garfield, dNdx)			
	Pi	К		
mean	58.1	53.6		
sigam	1.37	1.39		
sigma/mean	0.024	0.025		
separation	~ 2.3 sigma			

Guang Zhao, Linhui Wu, Jinxian Zhang, Chenguang Zhang, Xiaotian Ma, Ligang Xia, et. al.

- Reco Performance of TPC dN/dX degraded too much compared to truth level
 - 5.0 σ -> 2.3 σ for 12 GeV k/ π separation
 - various sources understood
 - work ongoing to improve the reconstruction algorithm
- PID algorithms being developed (TPC+TOF for charge hadrons ID, calorimeters lepton ID, etc.), to be integrated into PFO

Chapter content

Physics I	Performance	2			
1.1	Introduction				
1.2	Recap of sub-detector performance	2			
1.3	Detector global performance	2			
	1.3.1 Tracking	3			
	1.3.2 Particle Identification: Photon, Electron and Muon ID	6			
	1.3.3 PID for K, pi, p	8			
	1.3.4 Jet Flavour Tagging	8			
	1.3.5 Jet Energy and Boson Mass Resolution	9			
1.4	Benchmark Physics studies	10			
	1.4.1 Event Generation	11			
	1.4.2 Analysis Tools	12			
	1.4.3 Higgs mass and production cross-section through recoil mass	12			
	1.4.4 Branching ratios of the Higgs boson: h -> bb, cc, ss, WW, gg, $\mu^{+}\mu^{-}$	14			
	1.4.5 More Benchmarks	16			
1.5	Challenges & Plan	17			
	1.5.1 Methods & Considerations for Calibration, Alignment	17			
	1.5.2 Strategy for the measurement of absolute luminosity	21			
	1.5.3 Plan of the use of resonant depolarization for W/Z mass	21			
	1.5.4 Brief mention how the physics performance studies influence fur	ther			
	technology decisions/detector optimization	21			
1.6	Summary	22			

Comments/Recommendations on Performance

The planned list of channels looks a bit too high for a few months of work, better to focus on demonstrating that the reference detector reaches adequate performance for physics

- Select fewer channels, aimed at demonstrating that the reference detector reaches adequate performance for physics. Include some simple topology (e.g. Z→mumu). Encompass H, Z, W and top physics.
- Foresee in the TDR results and figures about performance on basic objects (leptons, photons, jets) as a function of energy and polar angle
- A measurement of V_cs during the WW run is probably a more relevant benchmark than V_cb;
- The channel to be used for the electroweak mixing angle measurement should be clarified

_

Priority: working closely
with software team for
the development and
performance studies of
basic objects

Plans:

	F 4				
H→ss/cc/sb		□	Process @ c.m.e<⊐	Domain	Relevant Det. Performance 🔍 🤞
H→inv Vcb	_	Z→µµ<⊐	Z@ 91.2 GeV<-	Z←⊐	lepton ID, tracking↩
W fusion Xsec	-	Η→γγ<⁻	qqH←	Higgs↩	photon ID, EM resolution↩ -
CKM angle $\gamma - 2\beta$		Higgs recoil←	ℓℓH<ੋ	Higgs↩	Lepton ID, track dP/P←
Weak mixing angle	Γ	H→ss<⊐	vvH @ 240 GeV<	Higgs↩	PID, Vertexing, PFA + JOI← 🦂
Higgs recoil H→bb, gg	_	H→inv↩	qqHሩ⊐	Higgs/NP←	PFA, MET↩
H→μμ	+	Vcs/Vcb<⊐	WW→ℓvqq @ 240/160 GeV<	Flavor←	PFA, JOI + PID (lepton, tau)↩ 🛛
Η→γγ		H→LLP←	<i>ℓℓ</i> Η<⊐	NP←	TPC, TOF, calo, muon detectors<- ∢
W mass & width Top mass & width	_		¢		<
Bs→1/1/d	Γ	H→µµ<⊃	qqH←	Higgs↩	lepton ID, tracking, OTK← 🦂
$\frac{BS \rightarrow \tau \nu}{BC \rightarrow \tau \nu}$	_	Top mass & width↩	Threshold scan @ 360 GeV↩	EW←	Beam energy↩
B₀→2 <i>π</i> ⁴ H→LLP		Weak mixing angle↩	Z→bb @ 91.2 GeV<-	EW←	
H→aa→4γ	L		-	1	U

Performance studies

• Fast simulation

• Full simulation

θ **= 85°**

Tracking at low pT to be improved