

太初芯片测试

张颖、梁志均

中國科學院為能物品加完所 Institute of High Energy Physics Chinese Academy of Sciences

■ 全尺寸 CMOS 像素探测器

- 1024×512 像素阵列 芯片尺寸: 15.9×25.7mm
- 25µm×25微米 像素尺寸
- 工艺: Towerjazz 180nm CIS process
- 快速优先级读出,可以用在ZH and Z runs上 (~40MHz clock)

TaichuPix-3 chip vs. coin

An example of wafer test result

	Status	CEPC Final goal		
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS		

Column [pixel]

太初束流望远镜: 时间分辨率

- 项目指标: 好于100ns 时间分辨率目前用太初束流望远镜初步结果
 - 时间分辨率<mark>好于50ns</mark>,满足指标要求 – 计划发表文章

太初顶点探测器原型机:功耗

- 项目指标: 低于100mW/cm2 的功耗
- 目前达到指标: 60mW/cm2 的功耗@17.5MHz时钟
 - 样机束流测试功耗: 60mW/cm2 (@17.5MHz时钟)
 - 验证了风冷设计,温度控制到30度以下,与热模拟符合
 - 风冷带来振动可以控制在微米级, 对空间分辨率没有可见的影响

太初芯片抗辐照性能:

MOST3项目无指标, CEPC vertex探测器最终需要承受10¹³n_{eq}· cm⁻²
辐照后束流测试表明

- 探测效率 >99% @ $10^{13}n_{eq}$ · cm^{-2} , 探测效率>95% @ 1.5^* $10^{14}n_{eq}$ · cm^{-2}

CEPC ref-TDR中的顶点探测器

Vertex detector Technology selection

- Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design[1])
 - Advantage: 2~3 times smaller material budget compared to alternative (ladder options)
- Alternative: Ladder design based on CMOS MAPS

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181

CEPC ref-TDR中的顶点探测器

- 4 single layer of bent MAPS + 1 double layer ladder
 - Material budget is much lower than alternative option
- Use single bent MAPS for Inner layer (~0.15m²)
 - Low material budget 0.06%X0 per layer
 - Different rotation angle in each layer to reduce dead area

270

layer	Radius	Material
Layer 1	11mm	0.06% X0
Layer 2	16.5mm	0.06% X0
Layer 3	22mm	0.06% X0
Layer 4	27.5mm	0.06% X0
Layer 5/6 (Ladders)	35-40 mm	0.33% X0
Total		0.57% X0

Long barrel layout (no endcap disk) to cover $\cos \theta <= 0.991$

CEPC ref-TDR中的顶点探测器计数率

	Hit rate (MHz/cm²)	Data rate@triggerless (Gbps)	Data rate@trigger (Gbps)
Higgs	0.61	0.18	<0.01
W	3.16	0.98	<0.01
Low lumi Z pole	3.9	1.2	~0.1

Hit density from background (from CDR)

- Data rate is dominated by background from pair production
- Estimated based on old version of software
- More details in Haoyu's MDI talk this afternoon
- WW runs and low Lumi Z runs (20% of high lumi Z)
- Data rate @1.2Gbps per chip for triggerless readout

CEPC ref-TDR中的功耗

Power consumption

- Fast priority digital readout for 40MHz at Z pole
- 65/55nm CIS technology
- Power consumption can reduced to ~40mW/cm²
- Air cooling feasibility study
 - Baseline layout can be cooled down to ~20 °C
 - Based on 3 m/s air speed, estimated by thermal simulation

	Matrix	Periphery	DataTrans.	DACs	Total Power	Power density
TaiChu3 180nm chip @ triggerless	304 mW	135 mW	206 mW	10 mW	655 mW	160 mW/cm ²
65nm for TDR @ 1 Gbps/chip (TDR LowLumi Z)	60 mW	80 mW	36 mW	10 mW	186 mW	~40 mW/cm ²

- 太初芯片的时间性能与功耗均达到项目要求

- 相关测量会尽快发表文章

■ CEPC ref-TDR中的顶点探测器设计基于65nm CIS工艺

- 是否可以结合MOST3的课题目标与CEPC ref-TDR的研发?
- 是否可以用65nm工艺研发顶点探测器芯片?
- 同时满足3微米分辨, 100ns时间分辨率和功耗要求

题目	时间	刊物
Beam test of a 180nm CMOS Pixel for the CEPC vertex detector	2024	Nucl.Instrum.Meth. A 1059(2024) 168945

2024年学术交流情况:学术交流与会议报告情况

会议名称		地点	时间	报告类型	题目
CEPC EU workshop	梁志均	法国马赛	2024年4月	大会报告	CEPC detector and physics overview
Pixel 2024	张颖	法国斯特拉斯堡	2024年11月	大会报告	CEPC vertex detector R & D status
ICHEP 2024	梁志均	捷克布拉格	2024年7月	分会报告	CEPC vertex detector R & D status
IAS 高能物理年会	梁志均	香港	2024年1月	分会报告	CEPC vertex detector R & D
CEPC workshop 2024	张颖	杭州			CEPC vertex detector R & D status
中国半导体辐射探测 器会议2024	张颖	青岛	2024年5月	大会报告	CEPC vertex detector R & D status
核探测器与核电子学 年会	李淑琦	青岛	2024年5月	分会报告	用于CEPC顶点探测器的单片式像 素探测器原型样机的研制
中国LHC物理年会	梁志均	青岛	2024年11月	分会报告	CEPC vertex detector R & D status

人才培养情况:培养青年人才的情况

≻培养1名博士后,2名博士生

- 1名博士后(吴天涯)在2024年出站,就业于南昌大学副教授
- 2名学生博士毕业(李淑琦, 严子越), 1名硕士(周佳)
 - 李淑琦、周佳获得所长奖学金奖,