含粲强子衰变高精度格点QCD研究

孟 雨 (郑州大学)

Based on Sci.Bull 68,1880(2023), PRD109,074511(2024) PRD110,074510(2024), PRD111,014508(2025)

第四届强子与重味物理理论与实验联合研讨会

2025年3月21-24日,甘肃·兰州

Outline

Introduction

- A puzzle in charmonium decays
 - $\eta_c \to 2\gamma$
 - $J/\psi \to \gamma \eta_c$
- Radiative decay
 - $D_s^* \to D_s \gamma$
- Weak decay
 - $J/\psi \to D_s/Dl\nu_l$
- Conclusion and outlook

Motivation

Charmed hadron: a meson containing at least one charm or anti-charm quark

• "November Revolution"— The discovery of J/ψ particle in 1974, greatly facilitated the establishment of the Standard Model.

Why charmed hadron decays ?

- Precise test for the standard model
 - The world's largest $\tau\text{-charm}$ factory—BESIIII
- Test various perturbative and non-perturbative approaches — intermediate energy scale
- More possibilities for the search of new physics
 rare decays

$$\eta_c \to 2\gamma$$

- H-P.Wang and C-Z.Yuan, New puzzle in charmonium decays, CPC46,071001(2022)
- Ours is verified by HPQCD, $\Gamma_{\eta_c \gamma \gamma} = 6.788(45)_{fit}(41)_{syst}$ keV, PRD108,014513(2023)

Lattice & Experiments

PDG(2023)

	$\Gamma(~\eta_s(1S) o \gamma\gamma$)	
	VALUE (keV)		EVTS
	$\textbf{5.4} \pm \textbf{0.4}$	OUR FIT	
DG(20	24)		
$\Gamma_{59} \eta_c(1S) -$	+ γγ		$(1.66\pm 0.13) imes 10^-$
Category: Radiative d	ecays		
The following dat	a is related to th	e above value:	
$\Gamma(\eta_c(1S) ightarrow$	<i>าา</i>)		
VALUE (keV)		EVTS	DOCUMENTID
$\textbf{5.1} \pm \textbf{0.4}$	OUR FIT Error	includes scale factor of 1.2.	

- The PDG-aver and PDG-fit are wrong before 2023 since the CLEO(08) experimental value is misused.
- PDG-fit(2024) is lower since the $\Gamma_{n_c}^{\text{total}}$ is changed: $32.0(7) \rightarrow 30.5(5)$ MeV.
- PDG-aver is removed from the PDG listing since 2024.

• CLEO(08) and BESIII(13) extract the branching fraction of $\eta_c \to 2\gamma$ by

$$J/\psi \to \gamma \eta_c \to 3\gamma$$

• PDG23,
$$Br(\eta_c \rightarrow 2\gamma)$$

$VALUE(10^{-4})$		CL%	EVTS	DOCUMENT IL	>	TECN	COMMENT
$\bf 1.68 \pm 0.12$	OUR FIT						
$2.2^{+0.9}_{-0.6}$ OUR	AVERAGE						
$2.7 \pm 0.8 \pm 0.6$				1 ABLIKIM	20131	BES3	
$0.7 \ ^{+1.6}_{-0.7} \ \pm 0.2$			$1.2 \ ^{+2.8}_{-1.1}$	² ADAMS	2008	CLEO	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
			 We do not use the follow 	ving data for ave	rages, fits	, limits, etc. • •	
$2.0 \ ^{+0.9}_{-0.7} \ \pm 0.2$			13	³ WICHT	2008	BELL	$B^{\pm} ightarrow K^{\pm} \gamma \gamma$
$2.80 \ ^{+0.67}_{-0.58} \ \pm 1.0$				4 ARMSTRONG	1995F	E760	$\overline{p} \ p \rightarrow \gamma \gamma$
< 9		90		⁵ BISELLO	1991	DM2	$J/\psi \rightarrow \gamma\gamma\gamma$
$6_{-3}^{+4}\pm 4$				⁴ BAGUN	1987B	SPEC	$\bar{p} p \rightarrow \gamma \gamma$
< 18		90		6 BLOOM	1983	CBAL	$J/\psi \rightarrow \eta_c \gamma$
1 ABLIKIM 2013	reports $[\Gamma(\eta_c(1S) \rightarrow \gamma \gamma) / \Gamma_{tc}]$	tal] × [B(J/ψ ($(1S) \rightarrow \gamma \eta_c(1S)$] = (4.5 ± 1.5)	$2\pm0.6 angle imes10^{-6}$	which we	divide by our best ve	alue B($J/\psi(1S) ightarrow \gamma \eta_c(1S)$) = 0.017 $\pm 0.004.$ Our first error
is their experim	ent's error and our second error	is the systemat	ic error from using our best w	ue.			

 $\frac{2}{2}$ ADAMS 2008 reports [$\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}$ × [B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$]] = (1.2 $^{+2.7}_{-1.1} \pm 0.3$) × 10⁻⁶ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$) = 0.017 ± 0.004. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\eta_c \rightarrow 2\gamma$:PDG24-update

VALUE (10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT	
$\textbf{1.66} \pm \textbf{0.13}$	OUR FIT Error includes scale factor of 1.2.						
		• • We de	o not use the following data for aver	ages, fits, limits,	etc. • •		
$3.2 \pm 1.0 \pm 0.3$			¹ ABLIKIM	20131	BES3		
$0.9 \ _{8}^{+1.9} \ {\pm} 0.1$		$1.2~^{+2.8}_{-1.1}$	² ADAMS	2008	CLEO	$\psi(2S) o \pi^+\pi^- J/\psi$	
$2.0 \ _{-0.7}^{+0.9} \pm 0.1$		13	³ WICHT	2008	BELL	$B^\pm o K^\pm \gamma \gamma$	
$2.80 \ ^{+0.67}_{-0.58} \ \pm 1.0$			⁴ ARMSTRONG	1995F	E760	$\overline{p} \; p o \gamma \gamma$	
< 9	90		⁵ BISELLO	1991	DM2	$J/\psi o \gamma\gamma\gamma$	
$6 {}^{+4}_{-3} \pm 4$			⁴ BAGLIN	1987B	SPEC	$\overline{p} \; p o \gamma \gamma$	
< 18	90		⁶ BLOOM	1983	CBAL	$J/\psi o \eta_c \gamma$	

¹ ABLIKIM 2013I reports [$\Gamma(\eta_c(1S) \to \gamma \gamma)/\Gamma_{total}$] × [$B(J/\psi(1S) \to \gamma \eta_c(1S)$)] = (4.5 ±1.2 ±0.6) × 10⁻⁶ which we divide by our best value $B(J/\psi(1S) \to \gamma \eta_c(1S))$] = (1.41 ±0.14) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ADAMS 2008 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (1.2 + \frac{2.7}{-1.1} \pm 0.3) \times 10^{-6}$ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$) = (1.41 ± 0.14) × 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $Br(J/\psi \to \gamma \eta_c) : 1.7(4)\% \to 1.41(14)\%$

$J/\psi \to \gamma \eta_c$

 $\bullet~{\rm New}$ method for $J/\psi\to\gamma\eta_c$ without momentum extrapolation

 $V(0) = 1.90(4), \ \operatorname{Br}(J/\psi \to \gamma \eta_c) = 2.49(11)_{\operatorname{lat}}(5)_{\operatorname{exp}}\%$

Y.M et al, PRD111,014508(2025)

A puzzle in charmonium decay

• Individual channel: Ours vs PDG

 $\eta_c
ightarrow 2\gamma$: 3.6 σ tension $J/\psi
ightarrow \gamma\eta_c$: 5.9 σ tension

• Combined channel: $Br(J/\psi \to \gamma \eta_c) \times Br(\eta_c \to 2\gamma)$

• BESIII: 5.23(40) × 10⁻⁶ 2412.12998

D^{\ast}_{s} decay mode

$D_s^{*\pm}$ I(JPP) = 0(1-)		
$J^P=1^-$ established by ABLIKIM 2023AZ.		
$D_s^{*\pm}$ MASS	2112.2 ± 0.4 MeV	~
$m_{D_s^{\pm\pm}}$ - $m_{D_s^{\pm}}$	143.8 ± 0.4 MeV	~
$D_s^{\star\pm}$ width	< 1.9 MeV CL=90.0%	~
D_s^{st+} decay modes		

 D_s^{*-} modes are charge conjugates of the modes below.

Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)	
Γ_1	$D_s^+\gamma$	$(93.6\pm0.4)\%$		139	~
Γ_2	$D_s^+\pi^0$	$(5.77\pm 0.35)\%$		48	~
Γ_3	$D_s^+e^+e^-$	$(6.7 \pm 1.6) imes 10^{-3}$		139	~
Γ_4	$e^+ u_e$	$(2.1^{+1.2}_{-0.9}) imes 10^{-5}$		1056	~

• Branching fraction first determined by BESIII PRL131,141802(2023)

$$Br(D_s^{*,+} \to e^+\nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat.}}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

• Radiative decay $D_s^* \to D_s \gamma$ can be used to estimate the D_s^* total decay width.

$D_s^* \rightarrow \gamma D_s$ from lattice QCD

- The right farmost points are included with the new method Y.M et al, PRD109,074511(2024)
- It gives $\Gamma(D_s^* \to \gamma D_s) = 0.0549(54)$ keV, much precise than 0.066(26) keV by HPQCD PRL112,212002(2014)

• BESIII+ HPQCD

 $f_{D_s^*}|V_{cs}| = (207.9^{+59.4}_{-44.6_{\text{stat.}}} \pm 9.9_{\text{syst.exp}} \pm 41.5_{\text{syst.latt}}) \text{MeV}$ where $\Gamma_{D_s^*}^{\text{total}} = 0.0700(280)$ keV.

• BESIII+ Ours

 $f_{D_s^*}|V_{cs}| = (190.5^{+55.1}_{-41.7_{\text{stat.}}} \pm 9.1_{\text{syst.exp}} \pm 8.7_{\text{syst.latt}}) \text{MeV}$ where $\Gamma_{D_s^*}^{\text{total}} = 0.0589(54)$ keV.

• Current measurements

channels	Upper limit	J/ψ number	Refs
$J/\psi \to D_s e \nu_e$	4.9×10^{-5}	$5.8 imes 10^7$	PLB639,418(2006)
$J/\psi \to D_s e \nu_e$	1.3×10^{-6}	2.3×10^8	PRD90,112014(2014)
$J/\psi \to De\nu_e$	7.1×10^{-8}	1.01×10^{10}	JHEP06,157(2021)
$J/\psi ightarrow D\mu u_{\mu}$	5.6×10^{-7}	1.01×10^{10}	JHEP01,126(2024)

BES & BESIII collaboration

• Future measurements ?

channels	Upper limit	J/ψ number	Refs
$J/\psi \to D_s e \nu_e$	—	1.01×10^{10}	BESIII
$J/\psi \to D_s \mu \nu_\mu$	—	$1.01 imes 10^{10}$	BESIII
$J/\psi \to D_s e \nu_e$	—	$\sim 10^{12}$	STCF
$J/\psi \to D_s \mu \nu_\mu$		$\sim 10^{12}$	STCF

$J/\psi \to D/D_s l\nu_l$

• The amplitude

$$i\mathcal{M} = -i\frac{G_F}{\sqrt{2}}V_{cs(d)}\epsilon_{\alpha}(p')H_{\mu\alpha}(p,p')g_{\mu\nu}\bar{u}_l\gamma_{\nu}(1-\gamma_5)u_{\nu_l}$$

with the nonperturbative hadronic interaction ZPC46,93(1990)

$$\begin{aligned} H_{\mu\alpha}(p,p') &\equiv \langle D/D_s(p)|J^W_{\mu}|J/\psi_{\alpha}(\epsilon,p')\rangle \\ &= F_1(q^2)g_{\mu\alpha} + \frac{F_2(q^2)}{Mm}p'_{\mu}p_{\alpha} + \frac{F_3(q^2)}{m^2}p_{\mu}p_{\alpha} - \frac{iF_0(q^2)}{Mm}\epsilon_{\mu\alpha\rho\sigma}p'_{\rho}p_{\sigma} \end{aligned}$$

• The decay width

$$\begin{split} \Gamma &= \quad \frac{G_F^2 V_{cs(d)}^2}{12M^2} \frac{1}{32\pi^3} \int_{m_l^2}^{(M-m)^2} dq^2 \times \left[c_0 (E_l^+ - E_l^-) \right] \\ &+ \quad \frac{c_1}{2} ((E_l^+)^2 - (E_l^-)^2) + \frac{c_2}{3} ((E_l^+)^3 - (E_l^-)^3) \right] \end{split}$$

with $E_l^{\pm}=\frac{1}{2M}\Big[q^2+m_l^2-\frac{1}{2q^2}\Big((q^2-M^2+m^2)(q^2+m_l^2)\mp 2M|\vec{p}|(q^2-m_l^2)\Big)\Big]$

$J/\psi \rightarrow D/D_s l\nu_l$ decay width

• The branching fraction

Y.M et al, PRD110,074510(2024)

$$\begin{array}{lll} {\rm Br}(J/\psi \to D_s e\nu_e) & = & 1.90(6)_{\rm stat}(5)_{V_{cs}} \times 10^{-10} \\ {\rm Br}(J/\psi \to D e\nu_e) & = & 1.21(6)_{\rm stat}(9)_{V_{cd}} \times 10^{-11} \end{array}$$

 $\bullet~$ The ratio between $\mu~{\rm and}~e$

Differential decay width

- The experimental inputs $m_{J/\psi} = 3.09690(1)$ GeV, $m_{D_s} = 1.96834(7)$ GeV, and $m_D = 1.86966(5)$ GeV
- A potential test by future Super Tau Charm Facility with expected $10^{12} J/\psi$ samples Front. Phys. (Beijing) 19, 14701(2024)

CLQCD gauge ensembles

- High precision lattice calculation
 - Five lattice spacings for continuum limit $a \to 0$
 - Three pion masses for chiral limit $m_\pi o m_\pi^{phys}$

Conclusion and outlook

Conclusion

- A puzzle in $\eta_c \rightarrow 2\gamma$ and $J/\psi \rightarrow \gamma \eta_c$
- The most precise $\Gamma(D_s^*\to D_s\gamma)=0.0549(54)~{\rm keV}$ and $R_{ee}=0.624(3)\%$ for the Dalitz decay $D_s^*\to D_s e^+e^-$
- The methodology of $J/\psi \to D/D_s l \nu_l$ can be applied to various $P \to V$ semileptonic decay

• Outlook

- \checkmark Disconnected contribution in charmed radiative decays
 - $J/\psi \to \gamma \eta_c, D_s^* \to \gamma D_s, D^* \to \gamma D$
- $\checkmark~$ Charmed $P \rightarrow V$ semileptonic decay: $D \rightarrow K^*$ and $D_s \rightarrow \phi$
- More systematic continuum limit $a \to 0$ and chiral limit $m_\pi \to m_\pi^{phys}$

□2025年轻强子专题研讨会

- •河南安阳, 2025年5月8日-12日
- https://indico.ihep.ac.cn/event/24241/

□2025年强子物理和有效场论"前沿讲习班

- •河南郑州, 2025年8月17日-31日
- https://indico.ihep.ac.cn/event/24901/

- □所长:马伯强教授
- □研究方向: 粒子物理、强子物理、核子结构、高能物理实验 (BESIII, JUNO, ATLAS, JUNO, LHAASO)
- □招聘引进
- •学科骨干: 50-70, 1000
- •拔尖人才:40+,100
- •初聘教授/副教授/助理教授, 35/25/18, 30/20/12
- •博士后:专业九级+20/10/6
- •详细信息:https://www5.zzu.edu.cn/rsc/info/1050/6296.htm