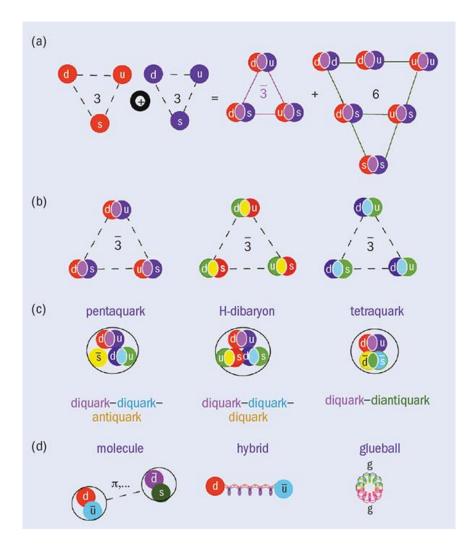


Existence of $\mathbf{0}^{--} \bar{\mathbf{D}}_s \mathbf{D} \mathbf{K}$ on nature of \mathbf{D}_{s0}^* (2317)


arxiv:2501.11358

吴天伟(中山大学)

Collaborators: Liu-Ming Zhu and Li-sheng Geng

2025.0323@兰州

Exotic hadronic states

Normal hadron:

meson: quark-antiquark pair

baryon: 3 quarks

Exotic hadron state:

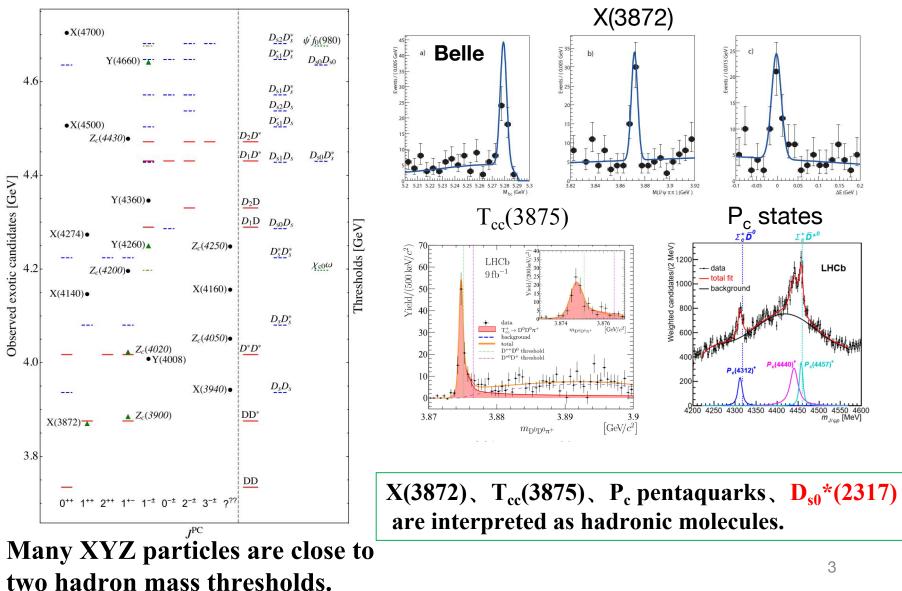
1. Glueball

Composed of gluons

2. Hybrid

Composed of quarks and gluons

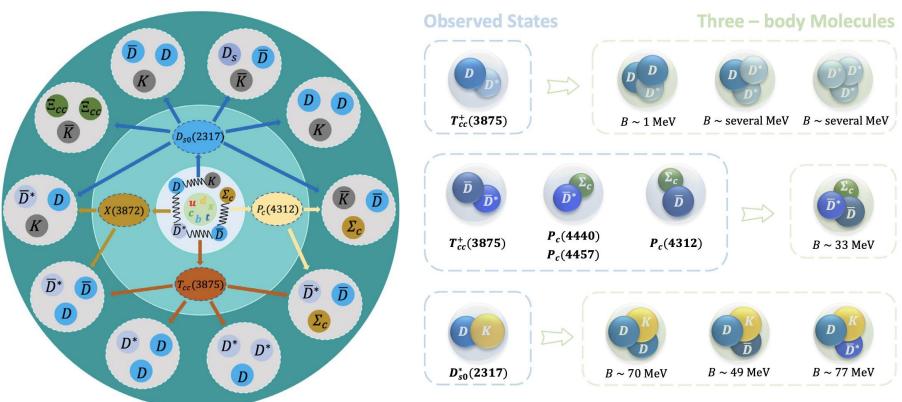
3. Multiquark state


Composed of multi quarks(>3)

4. Hadronic molecule

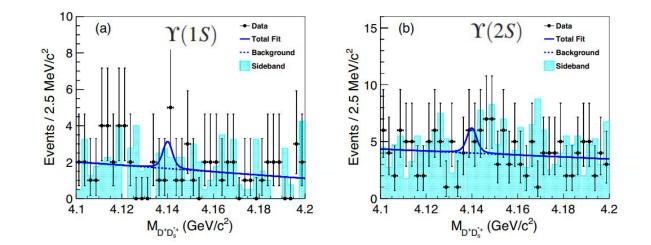
Composed of 2 or more hadrons

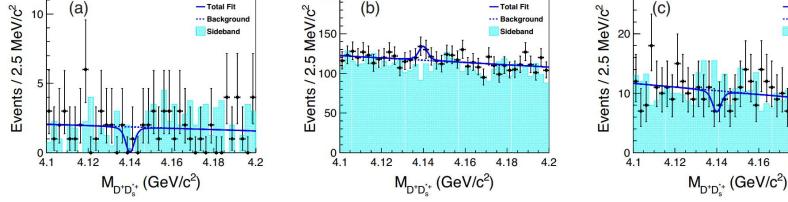
Hadronic molecules


F.K. Guo, et al. Rev.Mod.Phys.90.015004

Three-body molecules

T.W. Wu, et al. Science Bulletin 67 (2022) 1735-1738


M.Z. Liu, et al. Phys.Rept. 1108 (2025) 1-108


Three-body molecules based on two-body candidates

Seraching for DDK

 $\Upsilon(1S)/\Upsilon(2S) \to R^{++} + \text{anything}, R^{++} \to D^+ D_s^{*+}$

 $e^+e^- \rightarrow R^{++} + \text{anything at } \sqrt{s} = 10.520/10.580/10.867 \text{ GeV}, R^{++} \rightarrow D^+D_s^{*+}$ $\sqrt{s} = 10.520 \text{ GeV} \qquad \sqrt{s} = 10.580 \text{ GeV} \qquad \sqrt{s} = 10.867 \text{ GeV}$ $\sqrt{s} = 10.867 \text{ GeV} \qquad \sqrt{s} = 10.867 \text{ GeV}$ $\sqrt{s} = 10.867 \text{ GeV} \qquad \sqrt{s} = 10.867 \text{ GeV}$

4.2

Background

Sideband

4.18

Features of $\bar{D}_s DK$ system

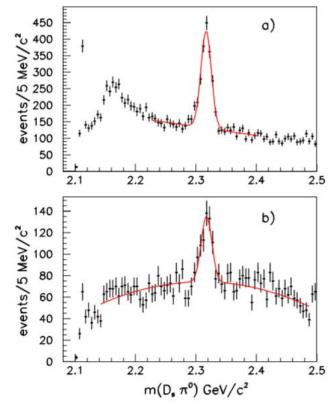
How to find and verify three-body molecules?

 \checkmark No mixture of conventional hadrons

 $\mathbf{0}^{--}$ exotic quantum numbers

 \checkmark Two-body system can not bind

Suppressed by the OBE model or OZI rule


 \checkmark Produced in both e^+e^- and pp collisions

Hidden charm/strange state easier to observe

D^{*}_{*s*0}(2317)

Ds0(2317), discovered by BABAR, CLEO and D0.

2.8

1 2.73 -----0 2.67 -----2.6 2⁺ 2.59 ------1⁺ 2.55, 2.56 -------D, (2573) Μ D⁺ (2536) $0^+ 2.48 -$ GeV1 160MeV 2.4 DK D⁺K^o D°K⁺ 2.32 2.2 *1 2.13* _____ D_s^{*+}(2112) 2.0 0⁻ 1.98 _____ D_(1969) 1.8

T. Barnes, et al. Phys. Rev. D 68, 054006

@PDG (Expe.) Mass: 2317.7 MeV Width: < 3.8MeV Partner D_{s1}: 2460 MeV M(D_{s1})-M(D_{s0})=140 MeV @Quark model (Theo.)
Mass: 2480 MeV
Width: 270-990 MeV
Partner D_{s1} : 2560 MeV
M(D_{s1})-M(D_{s0})=80 MeV

Molecular explanation of Ds0*(2317)

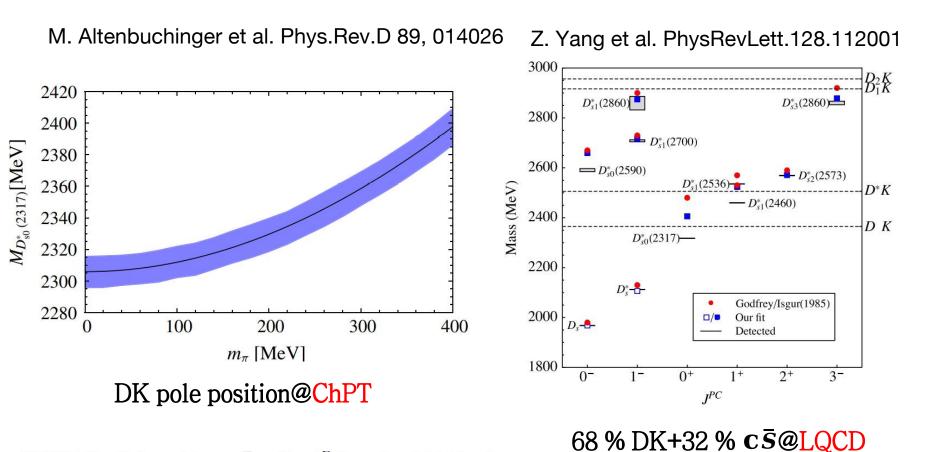
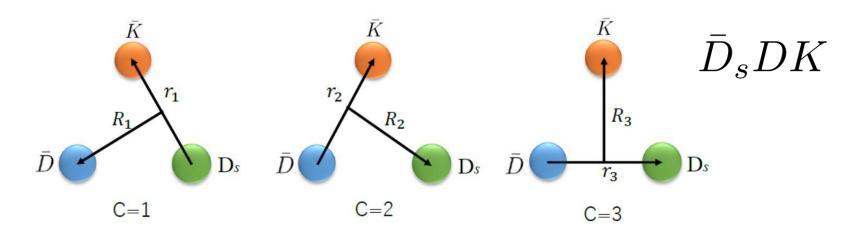



TABLE V. Pole positions $\sqrt{s} = M - i\frac{\Gamma}{2}$ (in units of MeV) of charm mesons dynamically generated in the HQS UChPT.

(S, I)	$J^P=0^+$	$J^P = 1^+$		
(1, 0)	2317 ± 10	2457 ± 17		
(0, 1/2)	$(2105 \pm 4) - i(103 \pm 7)$	$(2248 \pm 6) - i(106 \pm 13)$		

ChPT, Lattice and Exp. all surport that the $D_{s0}(2317)$ is a DK molecule or at least has a large DK component.

Wave function of $\bar{D}_s DK$ with C parity

$$\Psi^C = \frac{1}{\sqrt{2}} (\Psi_{\bar{D}_s DK} + C \Psi'_{D_s \bar{D}\bar{K}}), \quad \langle \Psi^C | (H - E) | \Psi^C \rangle = 0$$
$$C = \pm 1$$

$$\Psi'_{D_s\bar{D}\bar{K}} = \hat{C}\Psi_{\bar{D}_sDK} = \sum_{c=1,3} \Phi(r'_c, R'_c).$$

Solve three-body problem with **GEM**

$$H = T + V + V_C$$
Two-body C-parity
interaction interaction

Two-body interactions

DK interaction parameterized by a constant C_a

with Contact-range EFT approach

 $DK - D_s \eta$ coupled channel interaction in matrix form

$$V_{DK-D_s\eta}^{J^P=0^+} = \begin{pmatrix} C_a & -\frac{\sqrt{3}}{2}C_a \\ -\frac{\sqrt{3}}{2}C_a & 0 \end{pmatrix}$$

 V_{DK} in a Gaussian form in coordinate space

$$V(r) = C_a \frac{e^{(r/R_c)2}}{\pi^{3/2} R_c^3},$$

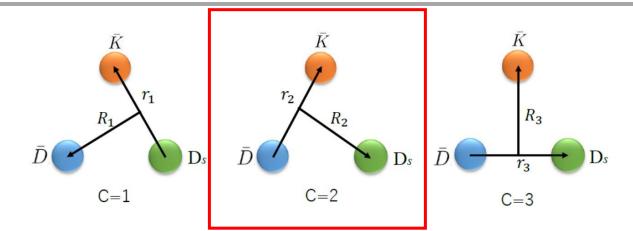
With SU(3) flavor symmtry

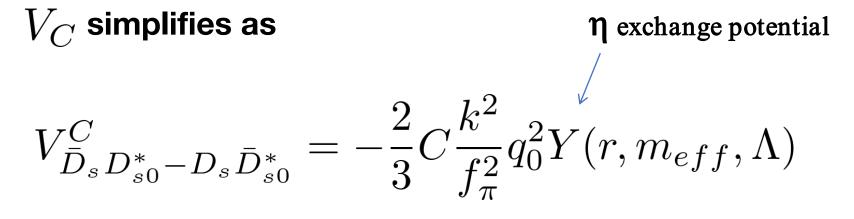
$$C_a^{DK}: C_a^{\bar{D}_s K}: C_a^{\bar{D}_s D} \approx 1: 0.5: 0.1$$

DK interaction fitting $D_{S0}(2317)$

Considering $D_{S0}(2317)$ as a $DK - D_s\eta$ molecule + $c\bar{s}$ state

Couplings	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 2.00$	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 2.00$
$g_{D_{s0}^*DK}$	19.37	14.72	13.32	12.66	16.20	12.28	11.16	10.63
$g_{D_{s0}^*D_s\eta}$	13.23	9.54	8.40	7.86	10.42	7.70	6.89	6.50
$C_a(\mathrm{fm}^2)$	-5.78	-1.84	-1.03	-0.71	-6.96	-2.06	-1.12	-0.75
Compositeness	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 1.00$	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 2.00$
P_{DK}	0.92	0.90	0.89	0.88	0.65	0.63	0.62	0.62
$P_{D_s\eta}$	0.08	0.10	0.11	0.12	0.05	0.07	0.08	0.08


TABLE IV. $D_{s0}^*(2317)$ coupling to its constituents (in units of GeV). Momentum space


Coordinate space

Components of $D_{s0}^*(2317)$	$M(DK - D_s\eta)$	M(DK)	$M(c\bar{s})$	$P(c\bar{s})$	P(DK)	$P(D_s\eta)$
70% molecule+30% $c\bar{s}$	2280	2349	2406	30%	60%	10%
100% molecule	2318	2358	2406	0%	90%	10%
50% molecule+50% $c\bar{s}$	2230	2336	2406	50%	42%	8%

[4] Z. Yang et al. PhysRevLett.128.112001

C-parity interaction $\bar{D}_s D_{s0}^* - D_s \bar{D}_{s0}^*$

 $q_0 = m_{D_{s0}^*} - m_{D_s}, k = 0.56, \quad \Lambda = \alpha \Lambda_{QCD} + m_{eff}, m_{eff} = \sqrt{m_\eta^2 - (m_{D_{s0}^*} - m_{D_s})^2}.$

Binding and weights of Jacobi channels

$0^{--} \bar{D}_s DK$ molecule:

Sets	B.E. $(0^{})$	$P_{\bar{D}_sK-D}$	$P_{DK-\bar{D}_s}$	$P_{\bar{D}_s D - K}$
$\alpha = 1$	22^{+23}_{-14}	11^{+1}_{-1} %	$78^{-1}_{+2}~\%$	11^{+0}_{-1} %
$\alpha = 2$	20^{+22}_{-13}	$10^{+1}_{-1}\%$	80^{-1}_{+2} %	10^{+0}_{-1} %

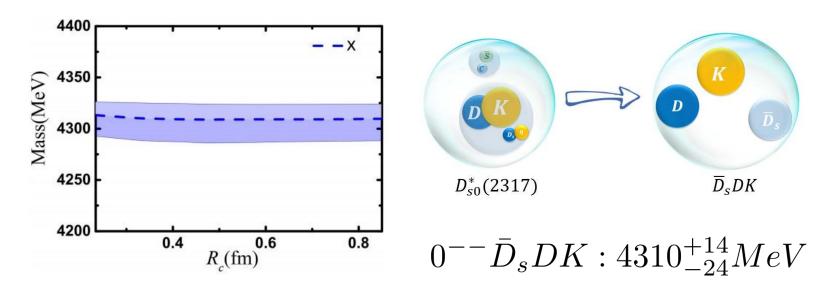
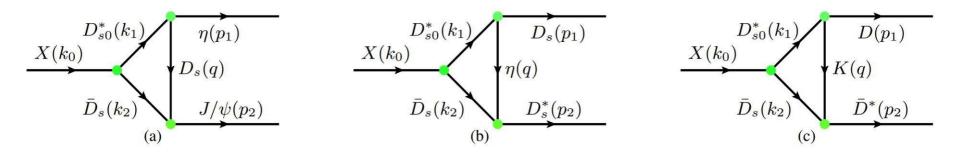
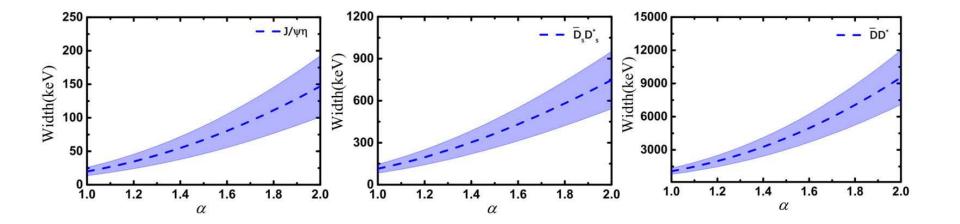



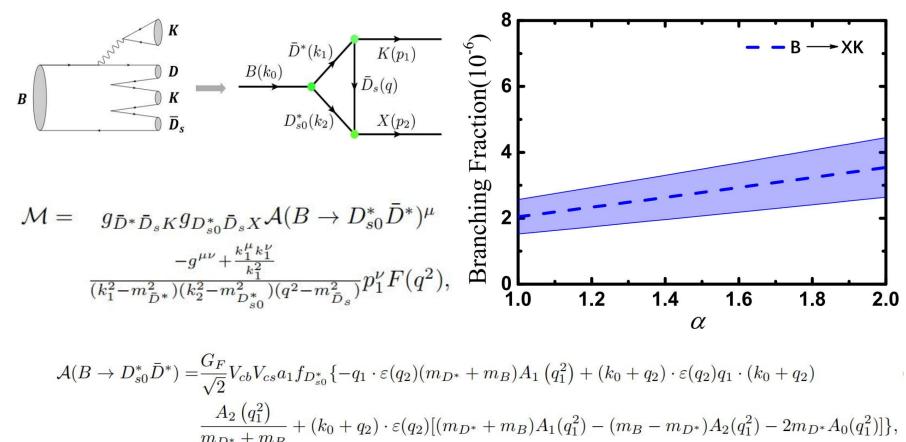
FIG. 5. Mass of X as a function of the cutoff R_c .

Decays of $0^{--} \bar{D}_s DK$ molecule


Triangle diagrams of the strong decays

$$\begin{split} i\mathcal{M}_{a} &= g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}D_{s}\eta}g_{\psi\bar{D}_{s}D_{s}}\int \frac{d^{4}q}{(2\pi)^{4}}(k_{2}^{\mu}-q^{\mu})\frac{1}{k_{1}^{2}-m_{D_{s0}^{*}}^{2}}\frac{1}{k_{2}^{2}-m_{\bar{D}_{s}}^{2}}\frac{1}{q^{2}-m_{D_{s}}^{2}}\varepsilon_{\mu}(p_{2})F(q^{2}),\\ i\mathcal{M}_{b} &= g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}D_{s}\eta}g_{\bar{D}_{s}D_{s}^{*}\eta}\int \frac{d^{4}q}{(2\pi)^{4}}q^{\mu}\frac{1}{k_{1}^{2}-m_{D_{s0}^{*}}^{2}}\frac{1}{k_{2}^{2}-m_{\bar{D}_{s}}^{2}}\frac{1}{q^{2}-m_{\eta}^{2}}\varepsilon_{\mu}(p_{2})F(q^{2}),\\ i\mathcal{M}_{c} &= g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}DK}g_{\bar{D}_{s}D^{*}K}\int \frac{d^{4}q}{(2\pi)^{4}}q^{\mu}\frac{1}{k_{1}^{2}-m_{D_{s0}^{*}}^{2}}\frac{1}{k_{2}^{2}-m_{\bar{D}_{s}}^{2}}\frac{1}{q^{2}-m_{\eta}^{2}}\varepsilon_{\mu}(p_{2})F(q^{2}), \end{split}$$

$$\Gamma = \frac{1}{2J+1} \frac{1}{8\pi} \frac{|\vec{p}|}{M^2} |\vec{\mathcal{M}}|^2 \qquad \qquad F(q,\Lambda,m) = (\frac{\Lambda^2 - m_E^2}{\Lambda^2 - q^2})^2$$


Partial decay widths

 $X \to J/\psi\eta \sim 10^1$ $X \to \bar{D}_s D_s^* \sim 10^2$ $X \to \bar{D}^* D \sim 10^3$

Dominent decay: $X \to D^*D$

Productions of $0^{--} D_s DK$ molecule

$$\frac{A_2(q_1^2)}{m_{D^*} + m_B} + (k_0 + q_2) \cdot \varepsilon(q_2) [(m_{D^*} + m_B)A_1(q_1^2) - (m_B - m_{D^*})A_2(q_1^2) - 2m_{D^*}A_0(q_1^2)]\},$$

Most promising process: $B^+ \rightarrow (X \rightarrow D^{*-}D^+)K^+ \sim 10^{-6}$

LHC integrated luminosity: 50 fb⁻¹ Events: 10 350 fb⁻¹ 100

16

- > 4310 MeV $\mathbf{0}^{--} \ \mathbf{\bar{D}}_{s} \mathbf{D} \mathbf{K}$ exotic molecule is predicted on the nature of $\mathbf{D}_{s0}^{*}(\mathbf{2317})$ as a molecule and $\mathbf{C} \mathbf{\bar{s}}$ mixture
- > Main decay $X \to \overline{D}^* D$ with several MeV width
- > Production process $\boldsymbol{B} \to (\boldsymbol{X} \to \bar{\boldsymbol{D}}^* \boldsymbol{D}) \boldsymbol{K}$ with 10^{-6} branching fraction

Experiment searches are strongly recommanded !