第四届强子与重味物理理论与实验联合研讨会

Rethinking the $N\phi$ scattering length with unphysical kaon mass in one-loop

西南大学

合作者:张旭,安春生,邓成荣

2025-3-24

Motivation

Theor. predictions

- The non-relativistic Yukawa potential $V_{(Q\bar{Q})A} = -\alpha e^{-\mu r}/r$ is matched to the Pomeron interaction.s. J. Brodsky et al, PRL64(1990); H. Gao et al, PRC63(2001).
- $\{N\phi, \Lambda K^*\}$ coupled channel scattering, F. Huang et al, PRC73(2006); J.J Xie et al PLB774(2017); C.S. An et al, PRC98(2018); J. He et al, PRD98(2018).
- Analysis in correlation function: attractive $N\phi$ scattering E. Chizzali et al,

PLB848(2024); L. M. Abreu et al, PLB860(2025).

Latt. prediction

• $J = 3/2 N\phi$ scattering length (-1.7, -0.9) fm fitted to two-pion exchange with $m_{\pi} = 146.4 \text{ MeV}$ by HAL QCD, Yan Lyu et al, PRD106(2022)

Exp. prediction

Re. Nφ scattering length around -1 fm w/o ΛK*, ΣK* coupled channel scattering by Alice, S. Acharyaet al, PRL127(2021)
 严茂俊 (SWU) Rethinking the Nφ scattering length with u 2025-3-24

2/15

$N\phi$ interaction to one loop

OBE

- η-exchange is perturbative.
- σ coupling to strange quark is not clear.
- $\omega \phi$ mixing is tiny

Two-pion exchange in bubbles

• Two-pion exchange in bubbles is negligible with a vanished WT in $\phi\pi({\cal K})$ scattering.

Dynamics in triangle diagrams S.J. Brodsky et al, PLB 412 (1997); A. Gal et al, PRL111(2013).

Dynamics in the triangle diagram

• $\mathcal{L}_{\phi_{K\overline{K}}} = ig\phi^{\mu}\left(\overline{K}\partial_{\mu}\cdot K - K\partial_{\mu}\cdot\overline{K}\right)$

- $L_1 = \langle \bar{B}i\gamma^{\mu}\frac{1}{4F_{\pi}^2} \left[(\Phi\partial_{\mu}\Phi \partial_{\mu}\Phi\Phi) B B \left(\Phi\partial_{\mu}\Phi \partial_{\mu}\Phi\Phi \right) \right] \rangle$
- Divergent part driven by a WT in $NK(\bar{K})$ sacattering
- Convergent part driven by a resummation WT in $NK(\bar{K})$ sacattering

The S-wave projected loop integral w/o couplings

$$I(I) = \int \frac{d^4I}{(2\pi)^4} \frac{\left[4I^2 + \vec{P}_1 \cdot \vec{P}_3\right] u(P_2) \gamma^0 \bar{u}(P_1)}{\left(I^2 - m_1^2\right) \left[(P_1 - I)^2 - m_2^2\right] \left[(P_3 - I)^2 - m_3^2\right]}, \text{ con. with large valued } I.$$

• For the pole $z_A : I^0 = \omega_1 - i\epsilon$

$$2\pi i \operatorname{Res} I(z_{A}) = \int \frac{d^{3}I}{(2\pi)^{3}} \frac{1}{8\pi m_{1}m_{2}m_{3}} \frac{8m_{K}}{P_{1}^{0} + P_{3}^{2} - 4\omega_{1}}$$

 $N\phi$ potential w/ $2m_K - m_\phi = \delta$ in HAL QCD

•
$$V_{LO}^{s} = -\frac{1}{4\pi^{2}} \frac{m_{K}}{m_{1}m_{2}m_{3}} \int \frac{g_{eff} |\tilde{l}|^{2} dl}{m_{\phi} - 2w_{1}}$$
, with the product of couplings g_{eff} .
• $\int \frac{l^{2}}{\delta - \frac{l^{2}}{m_{K}}} dl = m_{K} \left[-\Lambda - \frac{m_{K}\delta}{\sqrt{-m_{K}\delta}} \operatorname{ArcT} \left(\frac{\Lambda}{\sqrt{-m_{K}\delta}} \right) \right] = \tilde{l}^{div.}(\Lambda) + \tilde{l}^{con.}(\delta)$

Dynamics in the triangle diagram

$N\phi$ potential

•
$$V^{div.} = -\frac{1}{4\pi^2} \frac{m_K^2}{m_1 m_2 m_3} \int V^{WT} (I) dI \simeq -\frac{1}{4\pi^2} \frac{m_K^2}{m_1 m_2 m_3} V^{WT} (0) I_{max}.$$

• $I_{N\bar{K}}^{max} = 245 \text{ MeV}$ cut at $\Lambda(1520)$, $I_{NK}^{max} = 553 \text{ MeV}$ cut at NK^* th.
• $V_{I=0, N\bar{K}}^{WT} : V_{I=1, N\bar{K}}^{WT} : V_{I=0, NK}^{WT} : V_{I=1, NK}^{WT} = -3: -1:0:2.$
• $V^{div} \simeq \Delta (\Lambda)$
• $\frac{1}{V^{div.} + V^{con.}} \simeq \frac{1}{V^{con.}} \left(1 - \frac{V^{div.}}{V^{con.}}\right).$

$\mathit{N}\phi$ potential and ERE

•
$$\frac{8\pi th.}{T} = V^{-1} - G = -\frac{1}{a} - ik, -\frac{1}{a_{N\phi}} = \frac{1}{V^{con.}}$$
.
• $V_{LO}^{s, con.} = \frac{3g^2 R_{pole}}{4F_{\pi}^2} \sqrt{m_K \tilde{\delta}} \operatorname{ArcT} \left(\Lambda / \sqrt{m_K \tilde{\delta}} \right)$,
• $R_{pole} = \frac{g_i^2 / (th - s_{pole})}{V^{WT}} \simeq 5.65 \text{ D. Jido et al, NPA725(0223); Z.H. Guo and J. A. Oller, PRC87(2013)}$
• $Err = (1 \pm r_q)^4 = 1.00^{+0.26}_{-0.22} \text{ w} / r_q = \left(m_K^{phy.} / m_K \right)$.
严茂俊 (SWU) Rethinking the N ϕ scattering length with un 2025-3-24 6/

15

$N\phi$ scattering length with unphysical Kaon mass

$N\phi$ scattering length with unphysical Kaon mass

$N\phi$ scattering length with unphysical Kaon mass

$N\phi$ scattering length with physical Kaon mass

The momentum carried by the outgoning K is $118.17 \,\mathrm{MeV}$ in $\phi \to K\bar{K}$.

严茂俊 (SWU)

Rethinking the $N\phi$ scattering length with u

Power law

- V_{LO}^s is a distribution of δ^n in the power law, where n = 0 and 1/2 correspond to Λ is very small and large, respectively, which differs from the Van der Waals force proportional to $\delta^{3(7/2)}(p_{N\phi}^{6(7)})$
- Differs from the tail of two-pion exchange in HAL QCD.

Quark mass dependence

Varying the quark mass and determining the $N\phi$ scattering length.

Phillips line: n = 1/2

• The analogy is $B_3 = m_n + 2m_K = 2\delta = 2m_K - m_{\phi}$, where $K\bar{K}$ scattering in P-wave differs from the *nn* scattering in S wave. In the S-wave three-body scattering involving the $K\Lambda(1405)$ two-body scattering, the corresponding spin-parity is $1/2^+$ and couples to $1/2^-$, $3/2^-$ in an additional P-wave transition.

$\omega\phi$ threshold enhancement

M. Ablikim et al. (BESIII), PRD87, 032008 (2013)

A pole from $\omega \phi$ scattering around the threshold in addition to $f_0(1710)$?

Summary

- 1 The $N\phi$ scattering length evaluated in the triangle diagram with including $\Lambda(1405)$ matches to the one from HAL QCD, where the open channel effect in $\Sigma\pi$, $N\bar{K}$ scattering is ignored.
- 2 The scattering length is a power law of $K\bar{K}$ binding to ϕ and differs from two-pion exchange and Van der Waals force.
- **3** When n = 1/2, the Phillips line appears in $N\phi$ scattering.
- 4 When the 3B pole closes to the 2B threshold, the ERE is distorted.
- 5 This dynamics driven from the triangle diagram is adaptable to $\omega \phi$ threshold enhancement.
- **6** $P_{c}(4312)\pi$ couple to I = 3/2 sector.
- 7 $w_{c1}\pi$, $X(3872)\pi$ couple to $Z_c(4020)$.

Summary

- 1 The $N\phi$ scattering length evaluated in the triangle diagram with including $\Lambda(1405)$ matches to the one from HAL QCD, where the open channel effect in $\Sigma\pi$, $N\bar{K}$ scattering is ignored.
- 2 The scattering length is a power law of $K\bar{K}$ binding to ϕ and differs from two-pion exchange and Van der Waals force.
- **3** When n = 1/2, the Phillips line appears in $N\phi$ scattering.
- 4 When the 3B pole closes to the 2B threshold, the ERE is distorted.
- 5 This dynamics driven from the triangle diagram is adaptable to $\omega\phi$ threshold enhancement.
- 6 $P_c(4312)\pi$ couple to I = 3/2 sector.
- 7 $w_{c1}\pi$, $X(3872)\pi$ couple to $Z_c(4020)$.

Thanks !

Backup

The $\mathrm{SU}(3)$ matrices for the mesons and the baryons are the following

Table 1: Inputs of the isospin-averaged hadron masses

Hadron	Lattice [MeV]	Expt. [MeV]
K	524.7	495.6
ϕ	1048.0	1019.5
Ν	954.0	938.9

Backup: Phillips line

H.W. Hammer et al, Rev.Mod.Phys. 92 (2020)