## $D_0^*(2300)$ and $\omega(782)$ from lattice QCD

## 燕浩波

#### With 刘川, 刘柳明, 孟雨, 邢瀚洋 Maxim Mai, Marco Garofalo, Ulf-G. Meißner, Carsten Urbach

Based on:

- 1. Yan et al., PRD 111 (2025) 014503
- 2. Yan et al., PRL 133 (2024) 211906, Editors' Suggestion
- 3. Yan et al., arXiv 2504.xxxx on OpTion
- 4. Yan et al., arXiv 250x.xxxx on coupled channel  $D_0^*(2300)$



## Introduction

- Most new particles discovered are hadronic resonances in the non-perturbative regime
- LHCb discovered a tetraquark candidate  $T_{cc}(3875) \rightarrow DD^* \rightarrow DD\pi$  in 2022<sup>1</sup>



- Previous lattice studies lifted the pion mass and study the two-body  $DD^*$  scattering<sup>2</sup> and found the corresponding pole
- The real three-body scattering problem relies on the  $D\pi$  scattering amplitudes as an input
- We need to know how to solve the two-body and three-body problems, along the way we collect the fruits

<sup>1</sup>LHCb collaboration, NP 18 (2022) 751

<sup>2</sup>Padmanath *et al.*, PRL 129 (2022) 032002; Chen *et al.*, PLB 833 (2022) 137391; Lyu *et al.*, PRL 131 (2023) 161901; Collins *et al.*, PRD 109 (2024) 094509

Haobo Yan (PKU PHY)

 $D_0^*(2300) / \omega(782)$ 

#### Introduction

• A broad resonance  $D_0^* \to D\pi$  was found by Belle collboration<sup>3</sup> in 2004



- The mass of  $D_0^*(2300)$  is almost identical to  $D_{s0}^*(2317)$ , which is **not** consistent with the traditional quark model predictions<sup>4</sup>. This can be explained by the strong coupling to  $DK^5$
- UChPT: The possible two-pole structure, and  $D_0^*(2100)$  should be the lightest charmed scalar meson<sup>6</sup>

 <sup>&</sup>lt;sup>3</sup>Satpathy *et al.*, PRB 159 (2003) 553.
 <sup>4</sup>Du *et al.*, PRD 98 (2018) 094018.
 <sup>5</sup>Chen *et al.*, Rep. Prog. Phys. 80 (2017) 076201
 <sup>6</sup>Albaladejo *et al.*, PLB 767 (2017) 465.

## Lattice setup

- Turn off the weak and electromagnetic interactions
- Since the invention of lattice field theory<sup>7</sup>, the calculation of hadron spectroscopy in the non-perturbative regime has been pursued to understand the structure of particles from the first principle

| configuration | volume            | a/fm        | $m_\pi/{ m MeV}$ | $N_{\rm cfgs}$ |
|---------------|-------------------|-------------|------------------|----------------|
| C48P14        | $48^3 \times 96$  | 0.10530(18) | 135.5(1.6)       | 132            |
| F32P21        | $32^3 \times 64$  | 0.07746(18) | 210.9(2.2)       | 459            |
| F48P21        | $48^3 \times 96$  | 0.07746(18) | 207.2(1.1)       | 222            |
| F32P30        | $32^3 \times 96$  | 0.07746(18) | 303.2(1.3)       | 567            |
| F48P30        | $48^3 \times 96$  | 0.07746(18) | 303.4(9)         | 201            |
| H48P32        | $48^3 \times 144$ | 0.05187(26) | 317.2(0.9)       | 274            |

- 4 different pion masses to track the chiral behavior
- 3 lattice spacings to estimate the discretization error

<sup>&</sup>lt;sup>7</sup>Wilson, PRD 10 (1974) 2445

## Operator construction

- Symmetry broken  $O(3) \rightarrow O_h$  or even smaller group
- A Mathematica package **OpTion**<sup>8</sup> (**Op**erator construc**Tion**) is developed to construct general *N*-hadron operators

|                                                                                                   |                                                         |           | Y Fork 0 v 🛨 Starred 7 v                                                |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|-------------------------------------------------------------------------|
| P main * P 1Branch ©1Tag                                                                          | Q. Go to file                                           | <> Code + | About                                                                   |
| 🐢 wittscien Possible to print also JLS with partial wave method 86dd411-last month 🕥 12 Commits   |                                                         |           | OpTion (Operator construction) is a<br>Mathematica package for building |
| Manual .                                                                                          | Fix the elements of nnm.                                |           | operators in lattice QCD.                                               |
| DpTion                                                                                            | ion Possible to print also JLS with partial wave method |           |                                                                         |
| Tests                                                                                             | Tests Small change for the mom order                    |           | I Readme<br>I Rose<br>Activity<br>Activity<br>I vatching<br>V 0 forks   |
| 🗅 .gitignore First commit.                                                                        |                                                         |           |                                                                         |
| LICENSE.md                                                                                        | LICENSE.md First commit.                                |           |                                                                         |
| C OpTion.wl                                                                                       |                                                         |           |                                                                         |
| README.md                                                                                         | ADME.md Update README.                                  |           | Releases 1                                                              |
| II README II IIcense                                                                              |                                                         |           | S Option 1.0.0 (Latest)<br>on Aug 21, 2024                              |
| OpTion                                                                                            |                                                         |           | Packages                                                                |
| Ecores MIT Mathematica 30.x 11.x 12.x 13.x                                                        |                                                         |           | Publish your first package                                              |
| OpTion (Operator construction) is a Mathematica package for operator construction in lattice QCD. |                                                         |           | Languages                                                               |

• The package has been widely used in CLQCD collaboration

```
<sup>8</sup>https://github.com/wittscien/OpTion
```

Haobo Yan (PKU PHY)

## Finite-volume spectra

 $m_{\pi} \approx 303 \text{ MeV}$ 



- $\bullet\,$  The emergence of  $D^*$
- $\bullet$  Strong attraction in  $\mathit{S}\text{-wave}$  and small  $\delta_1$

## Pole positions of $D_0^*(2300)$ as a function of $m_\pi$



- Two-pole structure is to be found in the coupled  $D\pi D\eta D_s \bar{K}$  scattering
- $1/a_0$  at the physical point: not consistent with the experiment<sup>9</sup>
- An clear trend for the motion of the  $D_0^*(2300)$  pole is identified

bound state  $\rightarrow$  virtual state  $\rightarrow$  resonance

<sup>9</sup>ALICE (2024)

## Move on to the three-body problem

Now we have the two-body input – how do we approach the  $DD\pi$  channel?



Gravitational three-body problem

- Goal: space-time trajectories unsolvable
- Birth of mathematical chaos

Quantum mechanical three-body problem

- Goal: rigorous scattering theory solvable
- Spectra from lattice QCD
- Tests of the fundamental theory

## Three-body problem



For  $\omega$ -meson

- Three-body problem with resonances in two-body problem
  - $\blacktriangleright \ \pi\pi\pi \to \omega$
  - $\blacktriangleright \ \pi\pi \to \rho$
- Challenging isospin in the  $\pi\pi\pi$  channel
- crucial for  $T_{cc}$ <sup>a</sup>, Roper, ...

<sup>a</sup>Hansen et al., (2025)

## Three-body problem on the lattice – History

Two-body problem: many to investigate but looks good :)

- *ππ*: PRD 100, 114514 (2019)...
- T<sub>cc</sub>: PRL 129, 032002 (2022)...
- $\Lambda(1405)$ : 2307.10413, for review see Eur.Phys.J.ST 230 (2021) 6

Three-body problem: all repulsive except one study :(

- 2019:  $\pi\pi\pi$  at maximal isospin, PRL 122, 062503
- 2020:  $\pi\pi\pi$  at maximal isospin, PRL 124, 032001
- 2020:  $\pi\pi\pi$  at maximal isospin, PRD 101, 114507
- 2020: *KKK* at maximal isospin,  $I = \frac{3}{2}$  *KKK*
- 2021:  $\pi\pi\pi$  at maximal isospin, PRL 126, 012001
- 2021:  $\pi\pi\pi$  at maximal isospin, EPJC 81, 436
- 2021:  $\pi\pi\pi \to a_1(1260)$ , PRL 127, 222001
- 2023:  $\pi\pi K$  and  $KK\pi$  at maximal isospin, JHEP 05, 137

## $\omega$ : the first neutral vector meson (1961)<sup>1</sup>



Phenomenologically<sup>11</sup>,

- $\omega$  is the lightest hadron decaying into three particles:  $\omega \to 3\pi$
- ullet  $\omega$  dominates the isoscalar response within the VMD picture of the photon-nucleon interactions
- $\omega$  generates the observed repulsion at  $< 1\,{
  m fm}$  in the one-boson-exchange picture of the N-N interaction
- $\bullet~\omega$  mixes with the  $\rho$  and leads to marked effects in the pion vector form factor
- $\omega 
  ho$  mass splitting is phenomenologically interesting, for instance muon g-2 and dark matter

<sup>10</sup>Maglic et al. (1961).

<sup>11</sup>Sakurai (1960); Erkelenz (1974); Brown and Jackson (1976); Barkov et al., 1985; Connell et al. (1997); Bazavov et al. (2021).

Haobo Yan (PKU PHY)

## The methodology



- Operator construction from OpTion
- $I = 1 \ \pi\pi$  and  $I = 0 \ \pi\pi\pi$  spectra
- Develop the formalism to map finite to infinite volumes
- Solve the integral equations and search the poles

Disclaimers

- $\omega \to \pi^+\pi^-$  is forbidden due to G-parity but only 2%
- $\bullet\,$  Mixing with the  $\phi$  or  $\omega(1420)$  are ignored since they are too high to play a role in our analysis
- No continuum extrapolations yet

Haobo Yan (PKU PHY)

## Contraction topologies

- Insanely many diagrams (202 for only  $\pi\pi\pi \to \pi\pi\pi$ , only 9 for the two-body problem)
- The topologies for  $\pi\pi\pi \to \pi\pi\pi$



- Distillations<sup>2</sup> for the vast number of annihilation diagrams
- Collect all operators with different momentum configurations and do GEVP
- The spectra are stable against more non-local operators / thermal pollution /  $N_v$

<sup>&</sup>lt;sup>2</sup>Peardon et al., 2009

#### Finite-volume spectra



- Strong **attraction** in both the  $\pi\pi$  and  $\pi\pi\pi$  channels
- In the  $\pi\pi\pi$  channel, the ground levels indicate **bound**  $\omega$  at  $M_{\pi} \approx 305 \,\mathrm{MeV}$  and **resonating**  $\omega$  at  $M_{\pi} \approx 208 \,\mathrm{MeV}$
- Restricted to be below the  $\omega(1420)$  region

#### Quantization condition

• Using FVU (Finite-Volume Unitarity) of all state-of-art formalisms

$$\begin{cases} \tilde{K}^{-1}(\sigma) - \Sigma^{FV}(\sigma) = 0\\ \det[(\tilde{K}^{-1}(s) - \Sigma^{FV}(s))E_L - (\tilde{B}(s) + \tilde{C}(s))] = 0 \end{cases}$$

- Two-body quantization condition is equivalent to Lüscher's equation
- Combined fit for  $\pi\pi$  and  $\pi\pi\pi$  spectra for all  $M_{\pi}$ 's (EFT4)<sup>3</sup>

$$\begin{cases} \searrow & \sim \frac{\sigma - M_{\rho}^2}{g^2} \\ & \searrow & \sim \frac{s(M_{\rho}^2 - \sigma_q + 6g^2 f_{\pi}^2)(M_{\rho}^2 - \sigma_p + 6g^2 f_{\pi}^2)}{g^2 f_{\pi}^6 (s - M_{\omega}^2)} \end{cases}$$

• Parameters:  $[g, \delta, M_V, a]$ :  $(M_\rho = M_V + a M_\pi^2, M_\omega = M_\rho + \delta)$ 

<sup>&</sup>lt;sup>3</sup>For a review of the EFT form, see Meißner (1988).

## Finite-volume spectra revisited



- $\chi^2_{\rm dof}({\rm EFT4}) = 2.3$
- Continuous spectra from FVU
- High-lying energies above the cutoff are also well-predicted

#### Finite-volume spectra revisited



- $\chi^2_{\rm dof}({\rm EFT4}) = 2.3$
- Continuous spectra from FVU
- High-lying energies above the cutoff are also well-predicted

## Pole positions of $\omega(782)$ as a function of $m_{\pi}$



• Solve the integral equation  $^4~T=B+~C+\int \frac{d^3l}{(2\pi)^3}\frac{B+C}{2E_l(\tilde{K}^{-1}-\Sigma^{IV})}~T$ 

- $\omega$  is indeed a bound state at  $M_{\pi} \approx 305 \,\mathrm{MeV}$  and a resonance at  $M_{\pi} \approx 208 \,\mathrm{MeV}$
- Extrapolate to the physical pion mass, the poles agree well with the PDG values<sup>5</sup>

<sup>4</sup>Mai and Döring, 2017

<sup>5</sup>See related discussions in Hoferichter (2023), Hoferichter (2019), Hoid (2020), Colangelo (2022), Colangelo (2018).

Haobo Yan (PKU PHY)

 $D_0^*(2300) / \omega(782)$ 

## Summary

For  $D_0^*(2300)$ ,

• An clear trend for the motion of the  $D_0^*(2300)$  pole is identified.

bound state  $\rightarrow$  virtual state  $\rightarrow$  resonance

- The package OpTion is developed and widely used For  $\omega(782)$ ,
  - First-ever determination of the  $\omega$ -meson pole from lattice QCD
  - Development of the FVU, matching EFT and FVU
  - Paved the way to study heavier three-hadron resonances
  - $\bullet\,$  The  $\rho$  and  $\omega$  pole positions at the physical point

$$\sqrt{s_{\rho}} = (748.9(10.0) - i63.5(1.8)) \text{ MeV}$$
$$\sqrt{s_{\omega}} = (778.0(11.2) - i3.0(5)) \text{ MeV}$$

For the future,

- Coupled  $D\pi D\eta D_s \bar{K}$  analysis is expected soon
- Extension of the quantization condition is on the way
- Heavier three-body resonances ( $\phi(1020)$ , Roper,  $T_{cc..}$  are on the way)

# Thank you!

@Maxim Mai and Marco Garofalo

## Summary

For  $D_0^*(2300)$ ,

• An clear trend for the motion of the  $D_0^*(2300)$  pole is identified.

bound state  $\rightarrow$  virtual state  $\rightarrow$  resonance

- The package OpTion is developed and widely used For  $\omega(782)$ ,
  - First-ever determination of the  $\omega$ -meson pole from lattice QCD
  - Development of the FVU, matching EFT and FVU
  - Paved the way to study heavier three-hadron resonances
  - $\bullet\,$  The  $\rho$  and  $\omega$  pole positions at the physical point

$$\sqrt{s_{\rho}} = (748.9(10.0) - i63.5(1.8)) \text{ MeV}$$
$$\sqrt{s_{\omega}} = (778.0(11.2) - i3.0(5)) \text{ MeV}$$

For the future,

- Coupled  $D\pi D\eta D_s \bar{K}$  analysis is expected soon
- Extension of the quantization condition is on the way
- Heavier three-body resonances ( $\phi(1020)$ , Roper,  $T_{cc..}$  are on the way)

## $D_0^* \text{ and } \omega$ also thank you! $(\geqq \omega \leqq)$

@Maxim Mai and Marco Garofalo