Vortex state collisions for particle physics

Igor Ivanov

School of Physics and Astronomy, SYSU, Zhuhai

Mini-workshop on Quantum effects in atomic and particle physics

Sun Yat-sen University, Zhuhai

December 18th, 2024

Vortex states: an introduction

 \Box

 QQQ

Cylindrical wave with phase vortex

Coordinate dependence: $\psi(\mathbf{r}) \propto e^{i \ell \varphi_{\ell}}$

Intrinsic orbital angular momentum (OAM): $\langle L_z \rangle = \hbar \ell$.

€⊡

Bessel beams

Monochromatic solutions of the (scalar) wave equation:

• plane waves: definite **k**

$$
\phi(\mathbf{k}) \propto \delta^{(3)}(\mathbf{k} - \mathbf{k}_0), \quad \psi(\mathbf{r}) \propto \int d^3k \, \phi(\mathbf{k}) \, e^{i\mathbf{k} \cdot \mathbf{r}} = e^{i\mathbf{k}_0 \cdot \mathbf{r}}
$$

• Bessel beams: definite
$$
k_z
$$
, $\varkappa = |\mathbf{k}_\perp|$, and ℓ .
Momentum space:

$$
\phi(\mathbf{k}) \propto \delta(k_z - k_{0z}) \, \delta(k_{\perp} - \varkappa) \, e^{i \ell \varphi_k} \, .
$$

Coordinate space:

$$
\psi(\mathbf{r}) \propto \int d^3k \, \phi(\mathbf{k}) \, e^{i\mathbf{k}\cdot\mathbf{r}} \propto e^{ik_{0z}z} e^{i\ell\varphi_r} J_{\ell}(\varkappa r_{\perp}).
$$

Ε

下 不思う

K ロ ▶ K 伊 ▶ K 手

The Bessel beam is not normalizable in the transverse plane \rightarrow normalizable Laguerre-Gaussian (LG) wave packet is a better option for a vortex beam.

 \leftarrow m \rightarrow

The OAM of a vortex state

- Exact solutions for vortex photons and electrons: [Jentschura, Serbo, PRL106 (2011) 013001; Bliokh et al, PRL107 (2011) 174802; Karlovets, PRA 86 (2012) 062102; Serbo et al, PRA92 (2015) 012705] and later works.
- \bullet Spin and OAM can be entangled \rightarrow many exotic polarization states possible!

[Sarenac et al, New J. Phys. 20 (2018) 103012]

- Optical range vortex photons routinely studied and used since the 1980s, [Allen et al, PRA45, 8185 (1992)], with ℓ up to 10000: [Fickler et al, PNAS 113, 13642 (2016)].
- **Single mode vortex X rays, e.g.** $E = 1$ keV, $\ell = 30$ [Lee et al, Nat. Photonics 13 (2019) 205].
- Theoretical proposal: inverse Compton scattering of vortex optical photons off GeV range electrons [Jentschura, Serbo, PRL106 (2011) 013001] and the follow-up papers.

• Much higher cross section with ultrarelativistic partially stripped ions instead of electrons [Serbo, Surzhykov, Volotka, Ann. Phys. (Leipzig) (2021) 2100199], e.g. at the Gamma-Factory at CERN [Krasny, arXiv:1511.07794].

 \Rightarrow

 $2Q$

 $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

Several groups in China:

- \bullet Jian-Xing Li's group at XJTU, Xi'an: γ photons with OAM via nonlinear Compton of UR electrons on a CP laser pulse [Ababekri et al, arXiv:2211.05467] or "laser bullets" [Liu et al, Optics Lett. 45 (2020) 395].
- Liangliang Ji's group at SIOM, Shanghai: via bremsstrahlung [Wang et al, PR Research 4 (2022) 023084; NJP 24 (2022) 043037], through vortex e^+e^- pair production [Lei et al, PRD 104 (2021) 076025; Bu et al, PR Research 3 (2021) 043159; Lei et al, 2303.10851], or non-linear Compton scattering [Bu et al, 2302.05065].
- Tongpu Yu's group in Changsha: light-fan-in-channel method [Zhang et al, High Power Laser Sci. Eng. 9 (2021) e43] or GeV-range γ and positron beams with high OAM in an all-optical laser-plasma scheme [Zhu et al, NJP 20 (2018) 083013].

 QQ

イロン イ何ン イヨン イヨン・ヨー

- 2010–2011: experimental demonstration of vortex electrons: [Uchida, Tonomura, Nature 464, 737 (2010)]; [Verbeeck, Tian, Schattschneider, Nature 467, 301 (2010)]; [McMorran et al, Science 331, 192 (2011)]. Typical values: $E = 300$ keV, ℓ up to 1000, focusing to ≈ 1 Å focal spot.
- Proposals for higher energy vortex electrons: production in magnetic fields [Karlovets, NJP 23 (2021) 033048], via scattering [Karlovets et al, EPJC 83 (2023) 372], in heavy ion collisions [Zou, Zhang, Silenko, J.Phys.G50 (2023) 015003].
- Slow vortex neutrons: first reported in 2015, unambiguously demonstrated in 2022 [Sarenac et al, Sci. Adv.8, eadd2002 (2022)].
- Slow vortex He atoms [Luski et al, Science 373 (2021) 1105].

 QQ

医心室 医心室 医心室

Nuclear and particle physics with vortex states

 \leftarrow m \rightarrow

Э× Þ

Nuclear and particle physics with vortex states

So far only theoretical proposals...

Recent review: Ivanov, Prog.Part.Nucl.Phys. 127 (2022) 103987 [arXiv:2205.00412]

Igor Ivanov (SYSU, Zhuhai) [Vortex state collisions for particle physics](#page-0-0) 10/23

 OQ

Example 1: accessing the Coulomb phase

Based on:

Ivanov, PRD85, 076001 (2012); Ivanov et al, PRD94, 076001 (2016)

Igor Ivanov (SYSU, Zhuhai) [Vortex state collisions for particle physics](#page-0-0) 11/23

Vortex state scattering

Plane wave scattering $|k_1\rangle + |k_2\rangle \rightarrow |k'_1\rangle + |k'_2\rangle$:

- $\mathsf{K}=\mathsf{k}_1'+\mathsf{k}_2' = 0$ in the c.m. frame;
- differential cross section depends only on \mathbf{k}_1' .

 $4.17 \times$

∍

Ξ $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

Vortex state scattering

Plane wave scattering $|k_1\rangle + |k_2\rangle \rightarrow |k'_1\rangle + |k'_2\rangle$:

- $\mathsf{K}=\mathsf{k}_1'+\mathsf{k}_2' = 0$ in the c.m. frame;
- differential cross section depends only on \mathbf{k}_1' .

Vortex state scattering: $|x_1, \ell_1\rangle + |x_2, \ell_2\rangle \rightarrow |k'_1\rangle + |k'_2\rangle$.

- $K = k'_1 + k'_2$ is not fixed \Rightarrow distribution over K.
- A new dimension available in vortex state scattering!

Elastic vortex electron-electron scattering

 $e(\varkappa_1,\ell_1)\,e(\varkappa_2,\ell_2)\to e(k_1')\,e(\varkappa_2')$

[Ivanov et al, PRD94, 076001 (2016)]

Parameters used: $E_1 = 2.1 \text{ MeV}$, $k'_1 = 500 \text{ keV}$, $j_1 = 1/2$, $j_2 = 13/2$, $\varkappa_1 = 200$ keV, $\varkappa_2 = 100$ keV, Gaussian-smeared.

Interference fringes in the \vec{K}_{\perp} plane between pairs of plane-wave components inside each vortex state leading to the same final state

Elastic ee scattering beyond Born approximation

Multi-photon exchanges make the scattering amplitude M_{PW} complex:

$$
\mathcal{M}_{PW} = |\mathcal{M}| e^{i\Phi_C(\theta)}, \quad \Phi_C(\theta) = \Phi_0 + 2\alpha \ln(1/\theta),
$$

where θ is the c.m.f. scattering angle.

The Coulomb phase is not observable in plane wave scattering:

$$
\frac{d\sigma_{PW}}{d\cos\theta}\propto |\mathcal{M}_{PW}(\theta)|^2\,.
$$

Extra complications in scattering of charged hadrons, $\mathcal{M}=\mathcal{M}_{\mathsf{EM}}+\mathcal{M}_{s}$, with the strong and EM contributions interfering and mixing beyond Born approximation.

- **•** Debates on calculating $\Phi_C(\theta)$ starting from [Bethe, Ann. Phys. 3, 190 (1958)].
- **•** Experimental measurement of $\Phi_C(\theta)$ was considered impossible.

 OQ

Elastic ee scattering beyond Born approximation

Multi-photon exchanges make the scattering amplitude M_{PW} complex:

$$
\mathcal{M}_{PW} = |\mathcal{M}| e^{i\Phi_C(\theta)}, \quad \Phi_C(\theta) = \Phi_0 + 2\alpha \ln(1/\theta),
$$

where θ is the c.m.f. scattering angle.

The Coulomb phase is not observable in plane wave scattering:

$$
\frac{d\sigma_{PW}}{d\cos\theta}\propto |\mathcal{M}_{PW}(\theta)|^2\,.
$$

Extra complications in scattering of charged hadrons, $\mathcal{M}=\mathcal{M}_{\mathsf{EM}}+\mathcal{M}_{s}$, with the strong and EM contributions interfering and mixing beyond Born approximation.

- **•** Debates on calculating $\Phi_C(\theta)$ starting from [Bethe, Ann. Phys. 3, 190 (1958)].
- **Experimental measurement of** $\Phi_C(\theta)$ **was considered impossible.**

Accessing the Coulomb phase

Elastic scattering of vortex electrons gives experimental access to the Coulomb phase [Ivanov, PRD85, 076001 (2012); Ivanov et al, PRD94, 076001 (2016); Karlovets, EPL 116, 31001 (2016)].

For Bessel states, two PW configurations interfere:

$$
\mathcal{M} = c_a \mathcal{M}_a(k_{1a}, k_{2a}; k'_1, k'_2) + c_b \mathcal{M}_b(k_{1b}, k_{2b}; k'_1, k'_2)
$$

Scattering angles are different: $\theta_a \neq \theta_b \Rightarrow \Phi_C(\theta_a) \neq \Phi_C(\theta_b)$.

 $d\sigma\propto |c_a\mathcal{M}_a+c_b\mathcal{M}_b|^2$ contains the interference term sensitive to $\Phi_C(\theta).$

Accessing the Coulomb phase

- Left: no phase; right: artificially enhanced Coulomb phase.
- Realistic Coulomb phase: azimuthal asymmetry of $\mathcal{O}(10^{-4})$.

Proof-of-principle experiments challenging but possible.

Example 2: new tool for spin physics

Based on:

Ivanov, Korchagin, Pimikov, Zhang, PRL 124 (2020) 192001, PRD 101 (2020) 096010.

Igor Ivanov (SYSU, Zhuhai) [Vortex state collisions for particle physics](#page-0-0) 17/23

Probing scalar-pseudoscalar mixing

Consider spin-0 resonance production in plane wave $\gamma\gamma$ collisions.

Only $\lambda_1 = \lambda_2 \equiv \lambda$ helicity amplitudes are non-zero.

- Pure scalar: $\mathcal{L} \propto F^{\mu\nu} F_{\mu\nu} S \quad \rightarrow \quad \mathcal{M}_{S} \propto \delta_{\lambda_1, \lambda_2}$.
- Pure pseudoscalar: $\mathcal{L} \propto F^{\mu\nu} \tilde{F}_{\mu\nu} P \quad \rightarrow \quad \mathcal{M}_P \propto \lambda \, \delta_{\lambda_1, \lambda_2}.$
- \mathcal{S}/P -mixture: $\mathcal{M} \propto (g_\mathcal{S} + \lambda g_P) \delta_{\lambda_1, \lambda_2}.$

$$
\sigma_{\lambda} \propto |g_S|^2 + |g_P|^2 + 2\lambda \operatorname{Re}(g_S^* g_P).
$$

The unpolarized cross section is insensitive to scalar-pseudoscalar mixing:

$$
\sigma_0 \propto |g_S|^2 + |g_P|^2
$$

Igor Ivanov (SYSU, Zhuhai) [Vortex state collisions for particle physics](#page-0-0) 18/23

Probing scalar-pseudoscalar mixing

Consider spin-0 resonance production in plane wave $\gamma\gamma$ collisions.

Only $\lambda_1 = \lambda_2 \equiv \lambda$ helicity amplitudes are non-zero.

- Pure scalar: $\mathcal{L} \propto F^{\mu\nu} F_{\mu\nu} S \quad \rightarrow \quad \mathcal{M}_{S} \propto \delta_{\lambda_1, \lambda_2}$.
- Pure pseudoscalar: $\mathcal{L} \propto F^{\mu\nu} \tilde{F}_{\mu\nu} P \quad \rightarrow \quad \mathcal{M}_P \propto \lambda \, \delta_{\lambda_1, \lambda_2}.$
- \mathcal{S}/P -mixture: $\mathcal{M} \propto (g_{\mathcal{S}} + \lambda g_{\mathcal{P}}) \delta_{\lambda_1, \lambda_2}$.

$$
\sigma_{\lambda} \propto |g_S|^2 + |g_P|^2 + 2\lambda \operatorname{Re}(g_S^* g_P).
$$

The unpolarized cross section is insensitive to scalar-pseudoscalar mixing:

$$
\sigma_0 \propto |g_S|^2 + |g_P|^2.
$$

Igor Ivanov (SYSU, Zhuhai) [Vortex state collisions for particle physics](#page-0-0) 18/23

Consider now collision of unpolarized vortex photon beams: flipping helicity λ with the total angular momentum *m* fixed

- Pure scalar: $\mathcal{J}_S \propto (\mathcal{J}_1+\lambda\mathcal{J}_2)\delta_{\lambda_1,\lambda_2}$, where \mathcal{J}_1 and \mathcal{J}_2 depend on m_1 and m_2 and are oscillating functions of the energy.
- Notice: $\sigma_{\lambda=+1} \neq \sigma_{\lambda=-1}$ even for a pure scalar!
- The interaction is parity-conserving but the initial state (fixed m_i for any λ_i) is not parity-invariant.

イロト イ押 トイヨ トイヨト

 \equiv ΩQ

· Pure pseudoscalar:

$$
\mathcal{J}_P \propto \lambda(\mathcal{J}_1 + \lambda \mathcal{J}_2) \delta_{\lambda_1, \lambda_2}
$$

 \bullet S/P Mixture:

$$
\mathcal{J} \propto (g_S + \lambda g_P)(\mathcal{J}_1 + \lambda \mathcal{J}_2),
$$

• Unpolarized cross section is sensitive to mixing:

$$
\sigma_0 \propto (\mathcal{J}_1^2 + \mathcal{J}_2^2)(|g_S|^2 + |g_P|^2) + 4 \mathcal{J}_1 \mathcal{J}_2 \operatorname{Re}(g_S^* g_P).
$$

The extra term has a different interference pattern \rightarrow the amount of mixing can be determined via the energy scan of σ_0 .

Þ

 $\leftarrow \equiv$ 医阿里耳

Spin-1 meson \it{V} produced in e^+e^- annihilation with the PW amplitude:

$$
\mathcal{M}_{\zeta_1\zeta_2\lambda_V}=g\bar v_{\zeta_2}(k_2)\gamma_\mu u_{\zeta_1}(k_1)V^{\mu*}_{\lambda_V}(K).
$$

Here ζ_1 , ζ_2 , and λ_V are the helicities of e^- , e^+ , V .

In unpolarized e^+e^- annihilation, the meson is also unpolarized:

 $\sigma(\lambda_V = +1) = \sigma(\lambda_V = -1).$

Vortex e^+e^- annihilation: the amplitude $\zeta_1=-\zeta_2=\zeta$ dominates:

 $\mathcal{J}_{\zeta,-\zeta,\lambda_V} \propto (\lambda_V \cos \theta_K + 2\zeta)(\mathcal{J}_1 + 2\zeta \mathcal{J}_2),$

where \mathcal{J}_1 , \mathcal{J}_2 depend on m_1 , m_2 and are oscillating functions of energy.

E

医阿里耳

Vortex e^+e^- annihilation: the amplitude $\zeta_1=-\zeta_2=\zeta$ dominates:

 $J_{\zeta-\zeta,\lambda}$ \propto $(\lambda_V \cos \theta_K + 2\zeta)$ $(J_1 + 2\zeta J_2)$,

where \mathcal{J}_1 , \mathcal{J}_2 depend on m_1 , m_2 and are oscillating functions of energy. Unpolarized vortex electron beam: flip helicity ζ , keeping m fixed. The unpolarized e^+e^- annihilation is different for different λ_V :

 $\sigma(\lambda_V = +1) \neq \sigma(\lambda_V = -1)$.

Polarized mesons emerge from unpolarized e^+e^- annihilation!

Vortex e^+e^- annihilation: the amplitude $\zeta_1=-\zeta_2=\zeta$ dominates:

 $J_{\zeta-\zeta,\lambda}$ \propto $(\lambda_V \cos \theta_K + 2\zeta)$ $(J_1 + 2\zeta J_2)$,

where J_1 , J_2 depend on m_1 , m_2 and are oscillating functions of energy. Unpolarized vortex electron beam: flip helicity ζ , keeping m fixed. The unpolarized e^+e^- annihilation is different for different λ_V :

 $\sigma(\lambda_V = +1) \neq \sigma(\lambda_V = -1)$.

Polarized mesons emerge from unpolarized e^+e^- annihilation!

The lesson

Access to spin-parity properties via unpolarized, fully integrated cross sections

 \Rightarrow a new tool for exploring the proton spin structure!

- Physics of vortex states of particles is an emergent interdisciplinary field linking beam physics, atomic physics, optics, nuclear and particle physics.
- Vortex photons, electrons, neutrons, and atoms were experimentally demonstrated, but only at low energies. There are ideas how to produce high-energy vortex states, to be confirmed experimentally.
- Vortex states offer new degrees of freedom in nuclear and particle physics, which lead to remarkable effects. A dedicated experimental effort is needed to verify these intriguing predictions.

 $2Q$

 $\mathbf{y} \rightarrow \mathbf{z}$ in \mathbf{y}