Mini-workshop on Quantum effects in atomic and particle physics, Zhuhai

Manipulating isomers via NEEC

Yuanbin Wu

School of physics, Nankai University

December 2024

NEEC

NEEC: Nuclear Excitation by Electron Capture

- First proposed theoretically in 1976
- First experimental observation claimed in 2018
- Relevant for Nuclear structure and Nuclear astrophysics
- Manipulating nuclear states by manipulating electrons or ions
- Isomer depletion and Nuclear clock

NEEC

Isomer depletion

Isomer — long-lived excited state of nuclei

key factors in NEEC

- Vacancies of atomic levels
- Electrons

Scenarios of studies

- Storage rings
- EBITs
- Nuclear reactions
- Plasmas

.

0

- —Astrophysical plasmas
- -Laser-generated plasmas

Introduction

- **Isomer depletion**
- **Isomer production**
- **Summary**

Introduction

- **Isomer depletion**
- **Isomer production**
- **Summary**

NEEC for isomer depletion

Gunst, Litvinov, Keitel, Pálffy, Phys. Rev. Lett. 112, 082501(2014) Gunst, Wu, Kumar, Keitel, Pálffy, Phys. Plasmas 22, 112706 (2015) Wu, Gunst, Keitel, Pálffy, Phys. Rev. Lett. 120, 052504 (2018)Gunst, Wu, Keitel, Pálffy, Phys. Rev. E 97, 063205 (2018)Wu, Keitel, Pálffy, Phys. Rev. A 100, 063420 (2019)

First claimed NEEC evidence

Theoretical analysis

• NEEC probability $\ll P_{\rm exc} = 0.01$ by

about 8 orders of magnitude

Y. Wu et al., Phys. Rev. Lett. 122, 212501 (2019)

- J. Rzadkiewicz et al., Phys. Rev. Lett. 127, 042501 (2021)
- J. Rzadkiewicz et al., Phys. Rev. C 108, L031302 (2023)

First experimental evidence of NEEC

- ^{93m}Mo isomer depletion
- $P_{\rm exc} = 0.01$
 - C. J. Chiara et al., Nature 554, 216 (2018)

Background analysis

• Overestimated due to complex gamma background?

S. Guo et al., Nature 594, E1 (2021)

C. J. Chiara et al., Nature 594, E3 (2021)

New experiments with Isomer Beam

- ^{93m}Mo ion energy: 460 MeV
- Separating ^{93m}Mo production and depletion
- $P_{\rm exc} < 2 \times 10^{-5}$
- Theoretical NEEC probability: *P*(460 MeV)/*P*(840 MeV) ~ 8% Guo *et al.*, Phys. Rev. Lett. 128, 242502 (2022)

Clear observation of NEEC?

Conclusive observations of NEEC

- Clean environments?
- Control of the NEEC process?

Electron is one of the key factors in NEEC

- Shaping electron wave functions to manipulate the NEEC process?
 - electron vortex beams

Scenarios with control of the occurrence of the NEEC process

- Well-defined initial and final states
- Clear signals
- Characteristic signals of NEEC

NEEC with electron vortex beams

Shaping electron wave functions to manipulate nuclei?

Wu, Gargiulo, Carbone, Keitel, Pálffy, Phys. Rev. Lett. 128, 162501 (2022)

NEEC with electron vortex beams

Wu, Gargiulo, Carbone, Keitel, Pálffy, Phys. Rev. Lett. 128, 162501 (2022)

Somer depletion

Isomer production

229mTh

Zhao, Pálffy, Keitel, Wu, Phys. Rev. C 110, 014330 (2024)

- ^{229m}Th production
- NEEC characteristic signal recombined ion x-ray photon (atomic transition) gamma photon (30 ns delay)

^{229m}Th — Projected shell model

			2 830 95 BUCCELLAN ANDRE 194			1999 (1997) - Carlos Mariana (1997) - 1995 (1997)
$400 = \frac{15}{2^{+}} \frac{395}{2}$	8				²²⁹ Th	
350	$15/2^{+}$ 327.8			211.4		
300 = 268.	1	13/2+_296.	<u>5</u> 12/2 ⁺ 272.8	$15/2^{-311.4}$		
	13/2+241.5	200	13/2	219.6 213	3 7/2 ^{-237.4}	
200 = 11/2 ⁺ 183.	0	$11/2^{+}$ 209.	$\frac{0}{11/2^{+}}$	$\frac{11/2^{-}}{9/2^{-}} \frac{190.2}{162.7} \frac{11/2^{-}}{0/2^{-}} \frac{202.4}{173.5} 7/2^{-} \frac{213}{173.5}$	164.5	
150 E	11/2 ^{+_105.5}	9/2+ 137.	$\frac{3}{9/2^+}$ <u>125.4</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/2-104.5	
$100 = \frac{9/2^+}{100}$	9/2 ⁺ 97.1	7/2+ 77.8	3 7/2 ⁺ 71.8	$3/2^{-} 123$. $K^{\pi} = 5/2^{-}$	$\frac{2}{K^{\pi}} = 3/2^{-}$	
50 7/2+ 48.4	7/2+ 42.4	5/2+32.6	$5 = 5/2^+ = 29.2$		- DSM	
$0 = 5/2^+ - 0$	- 5/2+	3/2+ 0.07	$\frac{1}{3/2^{+}}$ 0.008			
Ē	$x^{\pi} = 5/2^{+}$	ŀ	$x^{\pi} = 3/2^{+}$			
	Туре	$J_i \; (K_i^\pi)$	$J_f~(K_f^\pi)$	Exp	Refs. [35, 63, 64]	PSM
		$9/2~(5/2^+)$	$7/2 \ (5/2^+)$	170 ± 30	213~(224)	217
		$9/2 (5/2^+)$	$5/2 (5/2^+)$	65 ± 7	82 (85)	75
		$9/2 (5/2^+)$	$5/2 (3/2^+)$	6.2 ± 0.8	19.98(17.37)	15.7
	E2	$7/2 (5/2^+)$	$5/2 (5/2^+)$	300 ± 160	252 (267)	274
		$5/2 (3/2^+)$	$5/2 (5/2^+)$		27.11 - 39.49 [35]	9.99
		$5/2 (3/2^+)$	$3/2 (3/2^+)$			267.37
		$3/2 (3/2^+)$	$5/2 (5/2^+)$	•••	27.04 (23.05)	10.47
		$9/2 \ (5/2^+)$	$7/2 \ (5/2^+)$	0.0076 ± 0.0012	0.0178 (0.0157) 0.0038 - 0.0185 [64]	0.0057
		$9/2 \ (5/2^+)$	$7/2 \; (3/2^+)$	0.0117 ± 0.0014	$\begin{array}{c} 0.0151 \ (0.0130) \\ 0.0144 \ - \ 0.0151 \ [64] \end{array}$	0.0157
	M1	$7/2 (5/2^+)$	$5/2 (5/2^+)$	0.011 ± 0.004	$0.0093 \ (0.0085)$ $0.0011 - 0.0096 \ [64]$	0.003
		$5/2 (3/2^+)$	$5/2 (5/2^+)$	0.00326 ± 0.00076 [35]	0.0012 - 0.0050 [35]	0.0026
		$5/2 (3/2^+)$	$3/2 \; (3/2^+)$	$0.0318^{+0.0102}_{-0.0091} [35]$	0.0332 - 0.0648 [35]	0.0282
Chen, Wang, Wu, submitted		$3/2 (3/2^+)$	$5/2 (5/2^+)$	$\begin{array}{c} 0.0172^{+0.0031}_{-0.0023} \ [26] \ 0.0219^{+0.0006}_{-0.006} \ [29] \\ 0.0272^{+0.0074}_{-0.0082} \ [25] \ 0.0295^{+0.0013}_{-0.0012} \ [30] \\ 0.0213^{+0.0013}_{-0.0013} \ [28] \ 0.0214^{+0.0002}_{-0.0022} \ [31] \end{array}$	$0.0076 \ (0.0061)$ $0.0056 \ - \ 0.0081 \ [64]$	0.0297

EBIT + Penning trap

EBIT — Electron beam ion trap

B. Tu et al., submitted

- Isomer production in an EBIT
- Detection of isomer in a Penning trap

Background clean

Introduction

- **Somer depletion**
- **Somer production**

- NEEC can play important roles in isomer depletion and isomer production
- Conclusive observations of NEEC are highly demanded
- Electron vortex beams can strongly affect the NEEC process
- Storage rings and EBITs may provide clean environments for NEEC observations
- Characteristic signal of NEEC which can distinguish NEEC from other nuclear excitation mechanisms should be helpful

