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Plane waves

Eigenstates of the momentum op-
erator

p̂|Ψ⟩ = p0|Ψ⟩. (1)

Plane wave photons with a defi-
nite helicity λ:

Λ̂|Ψ⟩ = λ|Ψ⟩, Λ̂ =
ŝ · p̂
|p|

(2)

Wave function in momentum
space

⟨p, s|Ψ⟩ = δ(p − p0)δs,λ (3)



Wave packets

a) Bessel wave-packet b) Laguerre-Gaussian wave-packet

Arbitrary wave packet states can be assembled as a superposition of
plane waves

|Ψ⟩ =
∫

d3p

(2π)3
a(p)|p⟩ (4)



Vortex photons

Bessel photon wave function in momentum representation

⟨p, s|κ, kz ,m, λ⟩ =
2π

κ
δ(p⊥ − κ)δ(pz − kz)e

imφpδs,λ (5)

Bessel photons posses definite total angular momentum m, definite
absolute value of transverse momentum κ, definite longitudinal
momentum kz and definite helicity λ

Disadvantage — non-normalizable in the transverse plane :

⟨κ, kz ,m, λ|κ, kz ,m, λ⟩ → ∞,

⟨κ′, k ′z ,m′, λ′|κ, kz ,m, λ⟩ ∝ δ(κ− κ′)δ(kz − k ′z)δm,m′δλ,λ′
(6)



Bessel - Gaussian photons

A normalized vortex photons state is obtained by introducing a
finite dispersion of the momentum

|BG⟩ =
∫

e−(κ−κc)2/2σ2
κe−(kz−kc)2/2σ2

z |κ, kz ,m, λ⟩
κdκ

(2π)2
dkz
(2π)

(7)

The probability density of a Bessel-Gaussian vortex photon is
peaked at average transverse and longitudinal momentum κc, kc. A
finite width of the peaks results in a non vanishing momentum
dispersion

⟨k2⊥⟩ − ⟨k⊥⟩2 = σκ2 ,

⟨k2z ⟩ − ⟨kz⟩2 = σz2
(8)



Interaction of an atom with EM field

Hamiltonian of the full system:

Ĥ = Ĥatom + Ĥfield + V̂ (9)

In a two-level model, the Hamiltonian of the atom is

Ĥatom = εe|e⟩⟨e|+ εg|g⟩⟨g|, (10)

the Hamiltonian of the quantized electromagnetic field

Ĥfield =
∑
ν

ων â
†
ν âν , (11)

where ν = {kν , sν} is a multi-index with photon momentum and
polarization



Interaction of an atom with EM field

The interaction is commonly described in the interaction picture

i∂t |ψ(t)⟩ = V̂int|ψ(t)⟩, (12)

where the interaction in the rotating wave approximation (RWA)
reads

V̂int =
∑
ν,n

[
g∗
ν,nσ̂+âνe

i∆νt + h.c.
]
, (13)

and here
σ̂+ = |e⟩⟨g|, σ̂− = σ̂†+ = |g⟩⟨e|,

gν,n = − e

m

√
2π

Vων
⟨g |ek,s · p̂e ik·r |e⟩

(14)

∆ν = ω − ων , ω - atomic resonance frequency.
No dipole approximation is assumed!



Spontaneous emission — Weisskopf - Wigner model

Weisskopf-Wigner model describes the spontaneous decay of an
excited atom

The inital condition for the state of the system is

|ψ(0)⟩ = |e⟩|0⟩ (15)



Spontaneous emission — Weisskopf - Wigner model

The Weisskopf-Wigner model makes use of the Markov
approximation which can be stated as∑

n

|gν,n|2e i∆ν(t−τ) = Γδ(t − τ) (16)

This implies that the change of atomic level population at a given
moment of time only depends on its value at this moment of time
System without memory.

Markov approximation works really well for realistic systems:
because typically Γ ≪ ω



Spontaneous emission — Weisskopf - Wigner model

The interaction changes the number of quanta of light only by ±1,
therefore the natural ansatz for the state of the system is

|ψ(t)⟩ = Ce(t)|e⟩|0⟩+
∑
n

Cg ,ν(t)|g⟩|ν⟩ (17)

In the original work the state of the system was obtained in a
dipole approximation, where the interaction constant is

gν = −
√

2πων

V
⟨g |d̂ |e⟩ · eν , (18)

and the excited and ground state probability amplitudes read

Ce(t) = e−
Γ
2
t , Cg ,ν(t) = −igν

t∫
0

Ce(τ)e
−i∆ντdτ (19)



Induced emission

What changes:

|ψ(0)⟩ = |e⟩|0⟩ ⇒ |ψ(0)⟩ = |e⟩|γ⟩ (20)



Plane wave inducing field

Arbitrary photon field cna be decomposed in terms of plane waves

|γ⟩ =
∑
ν0

γ(ν0)|ν0⟩, ν0 = {kν0 , sν0} (21)

And a response of the system to an arbitrary incident photon can
be constructed from responses to plane waves

|ψ(t)⟩ =
∑
ν0

γ(ν0)|ψPW(t)⟩. (22)

The state of the system corresponding to a plane wave incident
photon satisfies the initial condition



Ansatz for the state of the system

To describe the induced emission processes a natural ansatz for the
state of the system is of the form

|ψ(t)⟩ =
∑
ν

CPW
e,ν,n(t)|en⟩|ν⟩+

∑
ν1,ν2

CPW
g ,ν1,ν2(t)|g⟩|ν1, ν2⟩. (23)

Here n is the index, that numerates the magnetic quantum number
of the excited state. It is crucial to account for it to later describe
the interaction with a vortex incident photon.

The initial condition yields

CPW
e,ν,n(0) = δn,meδν,ν0 , CPW

g ,ν1,ν2(0) = 0. (24)



Equations for population amplitudes

The Schrödinger equation can be rewritten as a set of equations
for population amplitudes

i ĊPW
e,ρ,n(t) =

∑
ν

[
CPW
g ,ν,ρ(t) + CPW

g ,ρ,ν(t)
]
g∗
ν,ne

−i∆νt ,

i ĊPW
g ,ν,ρ(t) =

1

2

∑
n

CPW
e,ν,n(t)gρ,ne

−i∆ρt + CPW
e,ρ,n(t)gν,ne

−i∆νt .
(25)

which can be rewritten as a single integro-differential equation

ĊPW
e,ρ,n(t) = −

∑
ν,n′

t∫
0

dτ
[
CPW
e,ρ,n′(τ)gν,n′e

−i∆νt+

CPW
e,ν,n′(t)gρ,n′e

−i∆ρt
]
g∗
ν,ne

i∆νt . (26)

First term is exactly what one has for the spontaneous emission,
the second one is inherent to the induced emission process.



Plane wave solution
To solve the integro-differential equation one need to consider an
auxilary function

Cm,n(t, t
′) =

∑
ν

gν∗
n e i(ω0−ων)t′CPW

e,ν,m(t) (27)

It satisfies the following equation

∂tCn,n′(t, t ′ > t) = −Γ

2
Cn,n′(t, t ′ > t). (28)

And the solution for the excited state population amplitude is
obtained to be

CPW
e,ν,n(t) =δν,ν0δn,mee

− Γ
2
t − gν,meg

∗
ν0,ne

− Γ
2
t×

t∫
0

dt2

t2∫
0

e
Γ
2
t2+i∆ν0 t2−

Γ
2
t1−i∆νt1dt1.

(29)



Interaction with a vortex incident photon

To derive the state of the system which corresponds to an incident
vortex photon via integrate the excited and ground state
population amplitudes with

γ(ν0) = N

∫
e−(κ−κc)2/2σ2

κe−(kz−kc)2/2σ2
z

e iκb cos(φq−φb)⟨ν0|κ, kz ,m, λ⟩
κdκ

(2π)2
dkz
(2π)

.

(30)

We introduces an impact parameter b to account for the relative
distance between the atom and the incident photon



Average TAM and variation

At large enough times the population density of the excited state
vanishes and the state of the system is described by

|ψ(t)⟩ = |g⟩|γf⟩,

|γf⟩ =
∑
ν1,ν2

Cg ,ν1,ν2(t)|ν1; ν2⟩ (31)

One of the main interest of the research is to analyze the transfer
of TAM from the incident photon to the entangled pair of photons

⟨γf |Ĵz |γf ⟩ = (mγ +me)⟨γf |γf ⟩+∑
n

(n −mγ)J
2
mγ−n(κcb)In,λ(Γ, ωc, κc, σ, t),

⟨γf |Ĵ2z |γf ⟩ = (mγ +me)⟨γf |Ĵz |γf ⟩+∑
n

(n −mγ)(n +me)J
2
mγ−n(κcb)In,λ(Γ, ωc, κc, σ, t),

(32)



Mesoscopic target

In an experiment the position of the atom cannot be controlled
with an arbitrary precision. Instead the incident photon interacts
with a localized mesoscopic atomic target described by some
distribution function n(b). For the quantitative analysis of the
results we will assume a Guassian distribution

n(b) =
1

πσ2b
exp

(
− b2

σb2

)
(33)

centered on the the z-axis with the width σb.



Averaging of TAM and variation with the atomic
distribution

To describe the transfer of TAM in a scenario where the incident
photon interacts with a localized atomic target we average the
observables over the impact parameter

Jz =

∫
n(b)⟨Ĵz⟩d2b,

(∆Jz)
2 =

∫
n(b)

[
⟨Ĵ2z ⟩ − ⟨Ĵz⟩2

]
d2b.

(34)

We find the following final results

Jz = mγ +me +
∑
n

(n −mγ)

(|mγ − n|)!

(κcσb
2

)2|mγ−n|
In,λ(Γ, ωc, κc, σ, t),

(δJz)
2 =

∑
n

(n −mγ)
2

(|mγ − n|)!

(κcσb
2

)2|mγ−n|
In,λ(Γ, ωc, κc, σ, t)

(35)



Results

Figure 1: Average angular momentum and variation versus time for
different dispersion of momentum of the incident photon
σ = 1σ0(black), 1.5σ0(red), 2σ0(green), σ0 = 10−2eV,mγ = 3,me = 1



Results

Figure 2: (Left): Variation of TAM versus time for different TAM of the
incident photon mγ = 0(black), 1(red), 2(green), 3(blue), σ = 10−2eV.
(Right): natural logarithm of variation of TAM versus TAM of the
incident photon for σ = 10−2eV, t = 1/Γ



Conclusion
▶ Interaction of a vortex photon with an exited localized atomic

target ⇒ entangled pair of photons with a definite TAM

▶ Variation of TAM drops with incident photon mγ(κcσb
2

)mγ

, (36)

provided κcσb < 1.
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