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Proton electromagnetic form factors

Form factors describe non-point-like interaction: dσ
dΩ =

(
dσ
dΩ

)
pl
|F (q)|2

Space-like (q2 < 0)

• Real valued function

• Has intuitive interpretation: Fourier

transform of electric and magnetization

distributions

ρ(x⃗) =
Ze

(2π)2

∫
d3qF (q)e−iq⃗·x⃗

Time-like (q2 > 0)

• No intuitive meaning

• Complex valued: sources of imaginary part

— intermediate particles and excitations

• Relative phase is unknown. Can be

measured in experiments with polarized

beams (not done). 2



Why vortex protons?

Until now: produced vortex states have small energy (photons, electrons, neutrons and atoms)

Why consider p and even p̄?

• high proton mass → access to many hadronic reactions

• a milestone on the road to use vortex states in DIS to probe of nucleon structure (spin

crisis, OAM of quarks and gluons)

• proposals to generate vortex ions (Karlovets, New J.Phys.23, 033048)
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Simple scalar Bessel state

Coordinate space

In cylindrical coordinates (ρ, ϕ, z) for a scalar

particle propagating along z direction:

Ψ(r, t) =
N√
2E

ψl,κ(r)e
−iEt+ikzz,

ψl,κ(r) =

√
κ
2π
Jl(ρκ)eilϕr ,

Momentum space

ψl,κ(r) =

∫
d2k

(2π)2
al,κ(k)e

ik·r,

al,κ(k) = (−i)leilϕk

√
2π

κ
δ(|k| − κ).
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Vortex fermion

• Vortex Bessel fermion can be constructed using PW basis.

PW basis: A plane wave fermion with kµ = (E, k, kz), where k = |k|(cosϕk, sinϕk),
kz = |⃗k| cos θ, and helicity λ = ±1/2:

Ψkλ(r) =
NPW√
2E

ukλ e
−ik⃗r⃗ .

ukλ =

( √
E +mw(λ)

2λ
√
E −mw(λ)

)
, vkλ =

(
−
√
E −mw(−λ)

2λ
√
E +mw(−λ)

)
,

w(+1/2) =

(
ci e

−iϕi/2

si e
iϕi/2

)
, w(−1/2) =

(
−si e−iϕi/2

ci e
iϕi/2

)
,

where ci ≡ cos(θi/2), si ≡ sin(θi/2).

• Construction of Bessel vortex state using PW basis:

Ψκmkzλ(r) =
NBes√
2E

∫
d2k

(2π)2
aκm(k)ukλ e

−ik⃗·r⃗, aκm(k) = (−i)m eimϕk

√
2π

κ
δ(|k|−κ) .
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Scattering of two scalar Bessel states

1st particle: k1 = (E1, k1, k1z) with OAM m1; 2nd particle: k2 = (E2, k2, k2z) with OAM m2

The S-matrix element:

S =
N2

Bes

N2
PW

∫
d2k1

(2π)2
d2k2

(2π)2
aκ1,m1

(k1)aκ2,−m2
(k2)SPW =

i(2π)4δ(E)δ(kz)√
16E1E2E3E4

N2
BesN

2
PW

(−i)m1−m2

(2π)3
√κ1κ2

J

Vortex scattering amplitude:

J =

∫
d2k1d

2k2e
i(m1ϕ1−m2ϕ2)δ(|k1| − κ1)δ(|k2| − κ2)δ

(2)(k1 + k2 −K)M(k1, k2, k3, k4)

The dynamics is determined by J . The integral in J is

nonzero only when:

|κ1 − κ2| ≤ |K| < κ1 + κ2 6



Scattering of 2 Bessel states

configuration a: ϕ1 → ϕK + δ1 ϕ2 → ϕK − δ2

configuration b: ϕ1 → ϕK − δ1 ϕ2 → ϕK + δ2

δ1 =arccos
(κ21 − κ22 +K2

2κ1|K|

)
δ2 = arccos

(κ22 − κ21 +K2

2κ2|K|

)

J =
ei(m1−m2)ϕK

sin(δ1 + δ2)

(
Mae

i(m1δ1+m2δ2) +Mbe
−i(m1δ1+m2δ2)

)
Cross section: dσ ∝ |J |2d2k3d

2k4
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Kinematics of final 2 particle state

Plane wave scattering

Transverse momenta plane

Double vortex scattering

Transverse momenta plane
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Proton electromagnetic form factors

Form factors describe non-point-like interaction: dσ
dΩ =

(
dσ
dΩ

)
pl
|F (q)|2

Space-like (q2 < 0)

• Real valued function

• Has intuitive interpretation: Fourier

transform of electric and magnetization

distributions

ρ(x⃗) =
Ze

(2π)2

∫
d3qF (q)e−iq⃗·x⃗

Time-like (q2 > 0)

• No intuitive meaning

• Complex valued: sources of imaginary part

— intermediate particles and excitations

• Relative phase is unknown. Can be

measured in experiments with polarized

beams (not done). 9



Proton electromagnetic form factors

The plane wave amplitude is product of hadron

Jµ and lepton Lµ currents.

M =
e2

s
JµLµ,

Nucleon current Jµ is

v̄λ2(k2)
[
γµF1(s) +

F2(s)

2M
σµνKν

]
uλ1(k1) = v̄λ2(k2)

[
γµGM (s) +

Pµ

2M

GM (s)−GE(s)

1− τ

]
uλ1(k1),

GE = F1 + τF2, GM = F1 + F2.

where σµν = [γµ, γν ]/2, K = k1 + k2, s = K2, P = k2 − k1, and τ = K2/4M2.
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Proton electromagnetic form factors

J =
ei(m1−m2)ϕK

sin(δ1 + δ2)

(
Mae

i(m1δ1+m2δ2) +Mbe
−i(m1δ1+m2δ2)

)
.

Jµ =v̄λ2
(k2)

[
γµGM (s) +

Pµ

2M

GM (s)−GE(s)

1− τ

]
uλ1

(k1),

P =k2 − k1
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Results

Parameters:

m1 = 7/2; m2 = 3/2;

E1 = 1.2 GeV, E2 =
√
κ22 +M2 + p21z

κ1 = 0.2 GeV, κ2 = 0.1 GeV;

Kz = 0, |k3| = 0.8 GeV

A =

∫
dϕK |J |2 sin(ϕK − ϕ3)∫

dϕK |J |2
.

Few observations:

• number of fringes is defined by angular

momenta of initial states (m1,m2)

• Different Mandelstam s in one setup

s = (E1 + E2)
2 −K2
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Helicity structure

M = M∥ +M⊥

|J |2 = |J∥ + J⊥|2 = |J∥|2 + |J⊥|2 + 2Re[J∥J †
⊥].

Cm1
m2

= cos(m1δ1 +m2δ2), V± =

√
E+

1 E
−
2 ±

√
E−

1 E
+
2 , W± =

√
E+

1 E
+
2 ±

√
E−

1 E
−
2 .

RR/LL

∑
ξ

|J∥|2 ∝ 32E3E4 sin
2 θ3(C

m1−λ
m2−λ)

2|GM |2 × |W− − 1−GE/GM

2M(1− τ)
V+Pz|2.

RL/LR ∑
ξ

|Jγ,⊥|2 = 32|GM |2W 2
+E3E4(C

m1−λ
m2+λ)

2(1 + cos2 θ3).
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Helicity structure

Numerator, RR/LL keeping only terms

∝ sin(ϕK − ϕ3)∑
ξ

Re{J∥J ∗
⊥} ∝ 16E3E4 sin(2θ3)|GM |2 sin(ϕK − ϕ3)

× 2λ|K|
(
Cm1−λ
m2−λ

)2
Im{GE/GM} (|⃗k1|+ |⃗k2|)

1− τ
.

in approximation K ≪ κ3,4
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Non-relativistic regime

Parameters:

m1 = 7/2, m2 = 3/2,

E1 = 939 MeV, E2 =
√

κ2
2 +M2 + k21z,

κ1 = 40 MeV, κ2 = 20 MeV,

Kz = 0,

The asymmetry is not suppressed by the

hadron mass in non-relativistic regime, but

defined by how non-paraxial are initial vortex

states. Therefore, this method is feasible in low

energy experiments.
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Form factor vs charge distribution from wave function

Possible misconception if think about form factors as Fourier transform of electric and

magnetization distributions

ρ(x⃗) =
Ze

(2π)2

∫
d3qF (q)e−iq⃗·x⃗

Question: how charge distribution of non-point-like particle interplays with distribution encoded

by wave function?

Example: electron cloud in atoms - point-like Mott scattering cross section can be reduced by

poor overlaping of wave functions, but interaction in every point is with same strength αem (at

all energy scales)

Form factor gives interaction strength dependency at every point (effect is independent from

wave function overlapping)
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Conclusions

• It is possible to extract the relative phase shift of proton electromagnetic form factors in

pp̄ annihilation

• The asymmetry of differential cross section is proportional to relative form factor phase

• allows measurement at different Mandelstam s in one setup, useful if phase changes rapidly

• The asymmetry is not suppressed in non-relativistic limit, therefore can be measured in

experiments with low energy vortex hadrons.
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