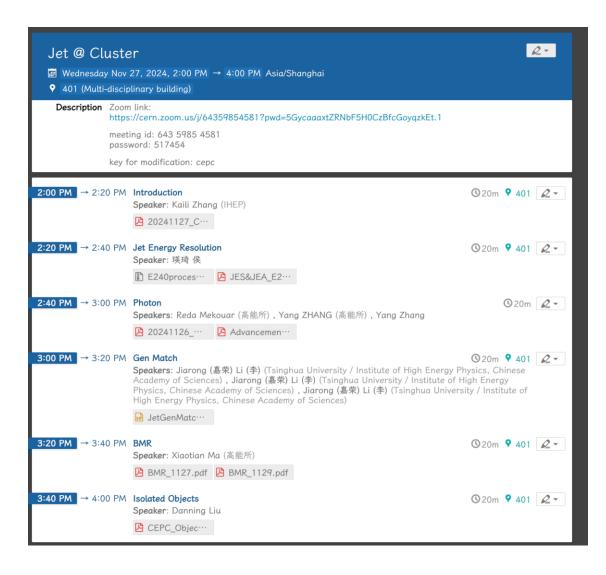


CEPC Jet&Clusters

Kaili Zhang

IHEP

zhangkl@ihep.ac.cn


Last Meeting

https://indico.ihep.ac.cn/event/24342/

2 hour + 6 contributions

Welcome to participate.

PFA algorithm update

@Zhang yang, Guo Fangyi

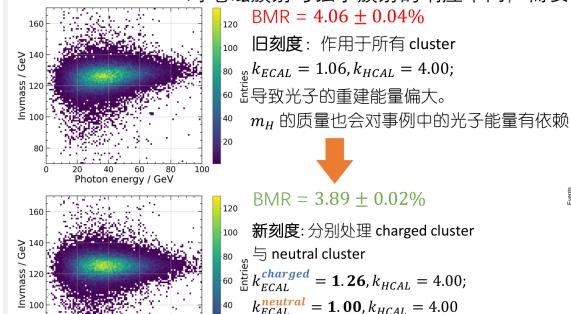
https://code.ihep.ac.cn/guofangyi/cepc
sw-release/-/tree/calorec

New CEPCSW release soon;

New calibration factor applied.

New PFA algo (BMR expected to 3.8%)

New Geometry (Muon chamber, Endcap calo.....)

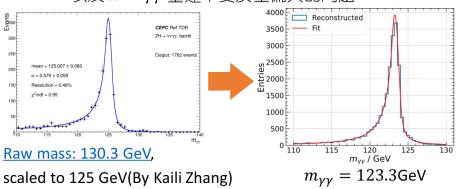


Progress on BMR

- 刻度的优化
 - ECAL对电磁簇射与强子簇射的响应不同,需要不同的刻度系数

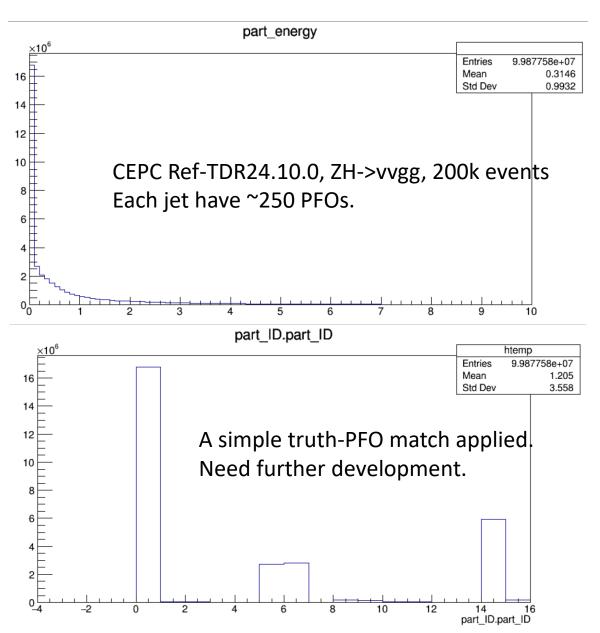
(中性强子能量占比小, 假设所有

neutral cluster 都来自光子)

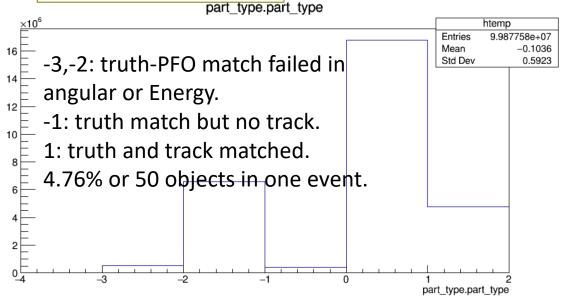


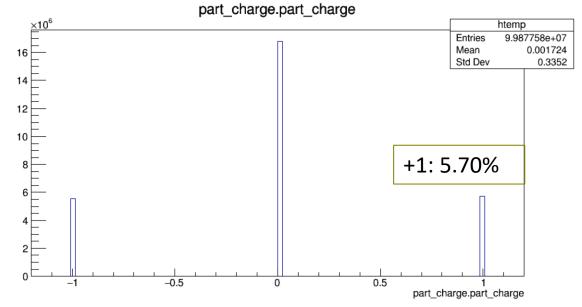
新的刻度方式解决了 m_H 对光子能量的依赖,

降低了BMR;

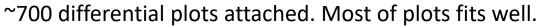

原则上也可以解决单光子重建能量偏大,

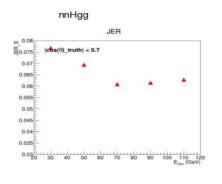
以及 $H \rightarrow \gamma \gamma$ 重建不变质量偏大的问题

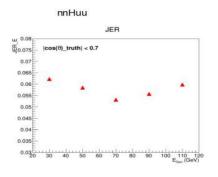

3

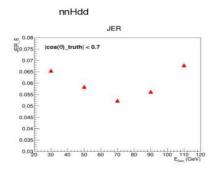

Revisit of Jet PFO

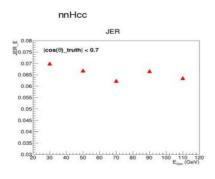
A sub-product of JOI. Based in 24.10.0.

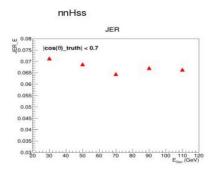


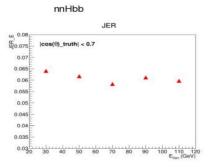

JES, JER

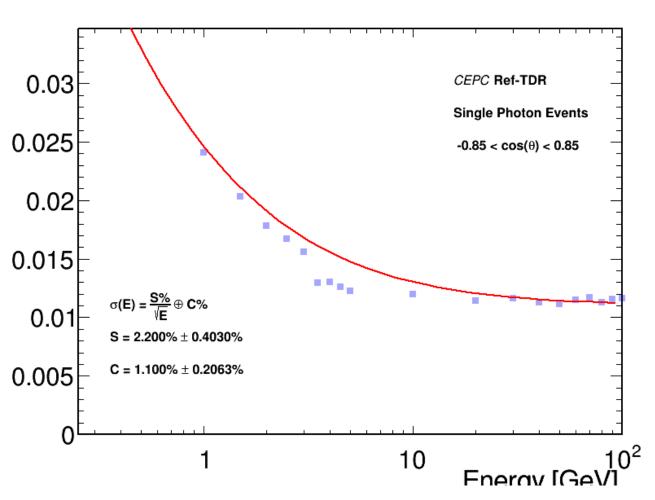







JER-E

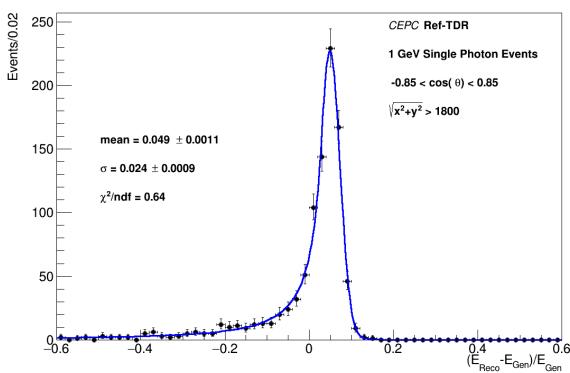




Several discrepancies found between tdr24.10 and CDR(Peizhu). Further study undergoing.

Single photon gun performance

Repeating Ecal performance;



First look at converted photons.
Reda use truth photon endpoint in XY plane

$$\sqrt{x^2 + y^2} < 1.83m$$

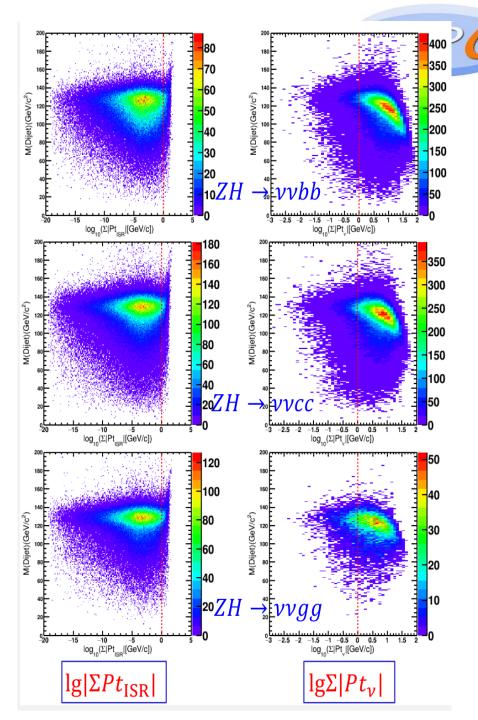
Currently, ~0.8% photon converted.

ATLAS expect ~10%. Under study.

BMR

Impact of event cleaning. (Same as Peizhu did for CDR)

- Perform BMR study in $ZH \rightarrow \nu\nu + gg/bb/cc/uu/dd/ss$ with $\sqrt{s} = 240 \text{GeV}/c^2$
- Comparisons with/without event cleaning under $|\cos\theta_{\rm jet}| < 0.7 \text{\&Match\&}\Delta R < 0.6$


Case	process	$ZH \rightarrow \nu \nu gg$	$ZH \rightarrow \nu \nu bb$	ZH → vvcc	ZH → vvuu	$ZH \rightarrow vvdd$	ZH → vvss
Without event cleaning	BMR/%	4.99 ± 0.03	6.48 ± 0.06	5.61 ± 0.02	4.84 ± 0.02	4.92 ± 0.04	5.56 ± 0.02
	Efficiency/%	56.6	56.4	56.7	57.2	56.8	56.5
With event cleaning	BMR/%	4.89 ± 0.03	4.71 ± 0.04	5.07 ± 0.03	4.82 ± 0.02	4.90 ± 0.04	5.53 ± 0.02
	Efficiency/%	50.6	21.3	37.2	54.2	53.8	53.5

- Event cleaning: $\Sigma |Pt_{\rm ISR}| < 1 {\rm GeV}/c \& \Sigma |Pt_{\nu}| < 1 {\rm GeV}/c$
- BMR improves especially for $ZH \rightarrow vvbb$ and $ZH \rightarrow vvcc$
- BMR ranges from 4.71% to 5.53%

BMR

Selection eff of event cleaning matched with CDR. Neutrinos, bb, cc flavor suffered. ISR ~5%.

Table 1. Event cumulative efficiency for Higgs boson exclusive decay at the CEPC with $\sqrt{s} = 240 \text{ GeV}$.				Table 3. Higgs boson mass resolution (sigma/Mean) for different decay modes with jets as final state particles, after event cleaning.			
	gg(%) bb(%) cc(%) WW*(%	%) ZZ* (%)	$H \rightarrow bb$ $H \rightarrow$	$\rightarrow cc$ $H \rightarrow gg$	$H \rightarrow WW^*$	$H \rightarrow ZZ^*$
Pt_ISR < 1 GeV 95.15 95.37		7 95.30 95.16	95.24	3.63% 3.82	2% 3.75%	3.81%	3.74%
Pt_neutrino <	1 GeV 89.33 39.04	4 66.36 37.46 41.39		CDR reference			
Cos(Theta_Jet)	< 0.85 67.30 28.65	5 49.31 -			<u>CDR reference</u>		
Process		ZH → vvgg	ZH → vvbb	ZH → vvcc	ZH → vvuu	ZH → vvdd	$ZH \rightarrow \nu \nu ss$
Cumulative efficiency /%	$Pt_{\rm ISR} < 1{\rm GeV}/c$	95.2	95.2	95.2	95.4	95.2	95.2
	$Pt_{\nu} < 1 \text{GeV}/c$	89.7	39.0	66.5	94.9	94.7	94.7
	$\left \cos\theta_{\mathrm{jet}}\right < 0.7$	52.9	21.7	38.0	55.3	55.1	54.9
	Match& $\Delta R < 0.6$	50.6	21.3	37.2	54.2	53.8	53.5
DSCB BMR/%		4.89 ± 0.03	4.71 ± 0.04	5.07 ± 0.03	4.82 ± 0.02	4.90 ± 0.04	5.53 ± 0.02

2024/12/2 Kaili

Isolated Object Removel

Package under developing.

Basic Criteria of Isolated Object

- Target :
 - $e/\mu/\gamma$ Separation
- Table of criteria (Thanks Hengne and Kaili for providing parameters)

Objects	Charge/Track	$\mathrm{E_{CAL}/E_{Total}}$	$\mathrm{E_{Total}/P_{Track}}$	$P_{\mathbf{T}}$
Electron	✓	> 0.6	> 0.9	5 GeV
Muon	✓	< 0.3	< 0.3	5 GeV
Photon	×	-	-	I0 GeV

More selections to be determined

DANNING LIU | CEPC WEEKLY MEETING 11/27/24 3