

Quantum State **Tomography at Colliders** Kun Cheng (Pitt)

2025/04/26 @ Peking University

Quantum information at colliders

- Fundamental interests (new environments, new systems)
- HEP for QI (rich information, vast number of events...)
- QI for HEP (new methods, techniques, model comparison...)

see the talk by Yu Shi

 η_t , a psedo scalar that couples to gg and $t\overline{t}$

 $\sigma(\eta_{\rm t}) = 8.8^{+1.2}_{-1.4} \,{\rm pb}$

[CMS, arXiv:2503.22382]

Quantum Tomography

— a procedure to reconstruct the complete quantum state

- Requirement: a **complementary** set of measurements
- One qubit: 3 operators

 $\rho = \frac{\mathbb{1}_2 + R_i \sigma_i}{2}, \quad R_i = \langle \sigma_i \rangle$

Two qubit: 3+3+9 operators

$$o = \frac{\mathbb{1}_4 + R_i^{\mathcal{A}} \sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}} \mathbb{1}_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j}{4}$$

Complete density matrix \implies complete quantum information

$$R_i^{\mathcal{A}} = \langle \sigma_i \otimes \mathbb{1}_2 \rangle$$
$$R_i^{\mathcal{B}} = \langle \mathbb{1}_2 \otimes \sigma_i \rangle$$
$$C_{ij} = \langle \sigma_i \otimes \sigma_j \rangle$$

Quantum Tomography

— a procedure to reconstruct the complete quantum state

- Requirement: a **complementary** set of measurements
- One qubit: 3 operators

 $\rho = \frac{\mathbb{1}_2 + R_i \sigma_i}{2},$

Two qubit: 3+3+9 operators

$$\rho = \frac{\mathbb{1}_4 + R_i^{\mathcal{A}} \sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}} \mathbb{1}_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j}{4}$$

Complete density matrix \implies complete quantum information

 $\triangleright \rho$ is entangled if $\mathscr{C}(\rho) = \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_3)$ λ_i are eigenvalues of $\sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$, $\tilde{\rho} = (\sigma_2)$

Bell's inequality is violated if $|\vec{a}_1 \cdot C \cdot (\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot C \cdot (\vec{b}_1 + \vec{b}_2)| = |\vec{a}_2 \cdot C \cdot (\vec{b}_1 + \vec{b}_2)|$ for any four directions \vec{a}_i, \vec{b}_i

,
$$R_i = \langle \sigma_i \rangle$$

$$R_i^{\mathcal{A}} = \langle \sigma_i \otimes \mathbb{1}_2 \rangle$$
$$R_i^{\mathcal{B}} = \langle \mathbb{1}_2 \otimes \sigma_i \rangle$$
$$C_{ij} = \langle \sigma_i \otimes \sigma_j \rangle$$

$$(-\lambda_4) > 0$$

 $(2 \otimes \sigma_2) \rho^*(\sigma_2 \otimes \sigma_2)$
 $\mathscr{C} = \begin{cases} \frac{-\operatorname{Tr}(C) - 1}{2}, & \text{(spin single)} \\ \max_i \left[\frac{\operatorname{Tr}(C) - 2C_{ii} - 1}{2} \right], & \text{(spin triple)} \end{cases}$

$$|\vec{b}_{2}| > 2$$
 e.g. $\sqrt{2}|C_{xx} \pm C_{yy}| > 2$

Spin states $t\bar{t}, \tau^+\tau^-W^+W^-\cdots$ Measure decay distribution $q\bar{q}$ Measure hadron distribution Some Measure $2 \rightarrow 2$ theory inputs kinematics $B^0 \overline{B}^0, K^0 \overline{K}^0$ Measure oscillation pattern Flavor states

Reconstructing the spin states

Spin-1/2: $t\bar{t}, \tau\tau, q\bar{q}$

Decay Products as Spin Analyzer

— no SG experiments in collider environments

- Reconstructed $\langle \sigma_i \rangle$ from decay distribution:
- E.g. t quark with spin vector \vec{s} : $\rho^t = \frac{1}{2}(I_2 +$

• $t \to \ell^+ \nu b$, ℓ^+ tends to fly along top spin

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\Omega} = \frac{1}{2}(1 + \ell_i^+ s_i)$$

Decay distribution \implies spin

 $|S_i = \langle \sigma_i \rangle =$

Similarly, for $t\bar{t}$ pair

$$\sigma = \frac{I_4 + s_i \sigma_i \otimes I_2 + \bar{s}_i I_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j}{4}$$

$$s_i = 3\langle \ell_i^+ \rangle, \quad \bar{s}_i = -3\langle \ell_i^- \rangle, \quad C_{ij} = -9\langle \ell_i^+ \ell_j^- \rangle$$

$$(s_i \sigma_i)$$

 $\ell^+ = \hat{p}_{\ell^+}$ **Lorentz structure** $\vec{p} \cdot \vec{s}$ violates Parity

$$= 3\langle \mathcal{C}_i^+ \rangle$$

Decay Products as Spin Analyzer

— no SG experiments in collider environments

- Reconstructed $\langle \sigma_i \rangle$ from decay distribution:
- E.g. t quark with spin vector \vec{s} : $\rho^t = \frac{1}{2}(I_2 + s_i\sigma_i)$

• $t \to \ell^+ \nu b$, ℓ^+ tends to fly along top spin

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\Omega} = \frac{1}{2}(1 + \ell_i^+ s_i)$$

Decay distribution \implies spin

Similarly, for $t\bar{t}$ pair

$$\sigma = \frac{I_4 + s_i \sigma_i \otimes I_2 + \bar{s}_i I_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j}{4}$$

$$s_i = 3\langle \ell_i^+ \rangle, \quad \bar{s}_i = -3\langle \ell_i^- \rangle, \quad C_{ij} = -9\langle \ell_i^+ \ell_j^- \rangle$$

 $\ell^+ = \hat{p}_{\ell^+}$ **Lorentz structure** $\vec{p} \cdot \vec{s}$ violates Parity

$$= 3\langle \mathcal{C}_i^+ \rangle$$

This choice is artificial and there are basis dependences

[KC, T. Han and M. Low, arXiv:2311.09166] [KC, T. Han and M. Low, arXiv:2407.01672]

Example basis choices, $i, j \in \{k, n, r\}$

Spin analysing power
•
$$t \to \ell^+ + X$$
, $\bar{t} \to \ell^- + X$ $s_i = 3\langle \ell_i^+ \rangle$, $\bar{s}_i = -3\langle \ell_i^- \rangle$, $C_{ij} = -9\langle \ell_i^+ \ell_j^- \rangle$

Different decay products have different capabilities of analysing spin

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\Omega} = \frac{1}{2} \left(1 + \alpha_a (\hat{p}_a \cdot \vec{s}) \right)$$

• $t \to a + X, \ \overline{t} \to b + X$

$$s_{i} = \frac{3\langle \hat{p}_{a,i} \rangle}{\alpha_{a}}, \quad \bar{s}_{i} = \frac{3\langle \hat{p}_{b,i} \rangle}{\alpha_{b}}, \quad C_{ij} = \frac{9\langle \hat{p}_{a,i} \hat{p}_{b,j} \rangle}{\alpha_{a} \alpha_{b}}$$

• Similiar reconstruction for qutrits ZZ, W^+W^- , ZW, etc. [A. Barr, arXiv:2106.01377] different entries sensitive to different channels [Q.Bi, Q.-H. Cao, **KC** and H. Zhang, arXiv:2307.14895]

Spin Analyzer a	Power α_a
lepton/down-quark	1.00
neutrino/up-quark	-0.34
b-quark or W	∓ 0.40
soft-quark	0.50

Some other spin-1/2 particles:

$$\begin{array}{l} \alpha_{\tau^+ \rightarrow \pi^+ \nu} = 1 \\ \alpha_{\Lambda_b \rightarrow \Lambda_c^+ \pi^-} \approx 1 \\ \alpha_{\Lambda_c^+ \rightarrow \Lambda \pi^+} = -\ 0.79 \\ \end{array}$$
[Du, He, Liu and Ma, arXiv:2409.13]

also see the talk by Yong Du and Sihao Wu

Experimental reconstructions

• Sometimes, the concurrence have a simple form

$$\mathscr{C}(\rho) = \frac{-\operatorname{tr}(C) - 1}{2}$$

Can be measured from single distribution
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi_{\ell^+\ell^-}} = \frac{1}{2} \left(1 - \frac{\operatorname{tr}(C)}{3} \cos\varphi_{\ell^+\ell^-} \right)$$

[Afik and de Nova, arXiv:2003.02280]

Detected distribution [ATLAS, arXiv:2311.07288] [CMS, arXiv:2406.03976] tt Templete fitting . . . Machine Learning [Zhang, Zhou, Liu, Li, Hsu, Han, Low and Wu, arXiv:2504.01496] also see the talk by Baihong Zhou Events 00009 Data ATLAS Pow+Py (hvq) $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ Pow+H7 (hvg) 340 < m_₊ < 380 GeV Pow+Py (bb4l) 50000 -0.14 Background Total uncertainty 40000 -0.16 -0.18 30000 -0.2 20000 -0.22 10000 Fold -0.24 Data 0 - Ratio -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 Detector-level $\cos \varphi$ see more in the talk by Veljko Maksimovic

Spin analyser for quarks

Difference:

Similarity:

$$\frac{1}{\sigma} \frac{d\sigma}{d\phi_1 d\phi_2} = \frac{1}{4\pi^2} + \frac{\alpha_a \alpha_b}{64} \left[\frac{C_{xx} - C_{yy}}{2} \cos(\phi_1 + \frac{1}{\sigma}) \frac{d\sigma}{d\phi_1 d\phi_2} - \frac{1}{4\pi^2} \left[1 + \frac{\sum_q e_q^2 H_1^{\triangleleft,q}(z_1, M_1) H_1^{\triangleleft,\bar{q}}(z_1, M_1) H_1^{\triangleleft,\bar{q}}(z_2, M_1) H_1^{\triangleleft,\bar{q}}(z_2, M_1) H_1^{\neg,\bar{q}}(z_2, M_1) H_1^{\neg,\bar{q}}(z_$$

$$\mathcal{B}_{-} \equiv C_{xx} - C_{yy} = \frac{2\langle \cos(\phi_1 + \phi_2) \rangle}{\alpha_{M_1,M_2}^{z_1,z_2}} = \frac{A_{12}}{\alpha_{M_1,M_2}^{z_1,z_2}}$$

[KC and B. Yan, arXiv:2501.03321] see more in Bin Yan's talk

kun.cheng@pitt.edu

Quantum tomography of spin states at colliders

Theory input is needed to perform quantum tomography at colliders

Reconstructing the flavor states

Quantum correlations in flavor space

- Particles can be entangled in flavor space, as informative as spin
 - E.g., meson pair decayed from $\Upsilon(J^{PC} = 1^{--})$ $\frac{1}{\sqrt{2}}(\left|B^{0}\bar{B}^{0}\right\rangle - \left|\bar{B}^{0}B^{0}\right\rangle)$
 - Vast number of events

e.g., $B_s \bar{B}_s$: 7 × 10⁶ at Belle, 8 × 10⁸ at LHCb

 $K_0 \overline{K}_0$: 8 × 10⁹ at KLOE and KLOE-2, etc

- Precise measurement of flavor oscillation and correlation.
- Quantum correlation, Bell inequality, quantum decoherence, etc. have been studied in *BB* at Belle, *KK* at KLOE...
- Reconstruct the complete **flavor density matrix**? $\underline{1}_{4} + R_{i}^{\mathcal{A}} \sigma_{i} \otimes \mathbb{1}_{2} + R_{i}^{\mathcal{B}} \mathbb{1}_{2} \otimes \sigma_{i} + C_{ij} \sigma_{i} \otimes \sigma_{j}$ $ho_{_{MM}}=1$

(0.04)

[Belle, hep-ph/0702267; KLOE, hep-ph/0607027,etc] [Y. Shi, quant-ph/0605070, 1102.2828, etc]

e.g. see the talk by Neetu Raj Singh Chundawat and Hailong Feng

Flavor density matrix of MM pair when they are produced, i.e., at t = 0

— achieving a complementary set of measurements

- One qubit: 3 operators
- Spin-1/2 particle as qubit:
 - $\rightarrow \vec{\sigma}$ is embedded in 3d spatial space.
 - Different direction to measure spin \rightarrow complementary set of observables.
 - Collider envoronment: infer $\langle \sigma_i \rangle$ from decay
- What about qubit in flavor space?
 - An obvious challenge: cannot choose"*direction*" of measurement freely?
 - e.g. flavor tagging, only σ_z : $\sigma_z |B^0\rangle =$

$$\rho = \frac{\mathbb{1}_2 + R_i \sigma_i}{2}, \quad R_i = \langle \sigma_i \rangle$$

$$|B^0\rangle\,,\ \, \sigma_z\,|\bar{B}^0\rangle=-\,|\bar{B}^0\rangle$$

Flavor/Mass eigenstate

- Hamitonian in flavor eigenstate: $|M\rangle$, $|M\rangle$
 - Mass eigenstate is $|M_1\rangle = p |M\rangle + q |\bar{M}\rangle$ $|M_2\rangle = p |M\rangle - q |\bar{M}\rangle$
- CP conserving case: $|M_{1/2}\rangle \propto |M\rangle \pm |M\rangle$

• $\rho_{M} = \frac{\mathbb{1}_{2} + R_{i}\sigma_{i}}{2}$, R_{i} still have physical meaning; conversions are:

z-direction \implies flavor eigenstate, (oscillates with y)

x-direction \implies mass eigenstates (and CP eigenstates)

$$\left\langle H
ight
angle = \mathbf{M} - i\mathbf{\Gamma}/2 = \begin{pmatrix} m - irac{\Gamma}{2} & P^2 \\ Q^2 & m - irac{\Gamma}{2} \end{pmatrix},$$

$$\bar{M}\rangle, \qquad (m_1,\Gamma_1)$$

$$M\rangle, \qquad (m_2,\Gamma_2)$$

difference between flavor and mass eigenstate leads to flavor oscillation

$$\begin{split} |M\rangle, R_z &= 1 \\ |\bar{M}\rangle, R_z &= -1 \end{split}$$

$$\begin{split} |M_1\rangle, R_x &= 1\\ |M_2\rangle, R_x &= -1 \end{split}$$

State evolution in Bloch-vector space

$$\rho(t) \propto U(t)\rho U(t)^{\dagger} \qquad U = \begin{pmatrix} \frac{1}{2}(e^{-\Gamma_{1}t/2 - im_{1}t} + e^{-\Gamma_{2}t/2 - im_{2}t}) & \frac{q}{2p}(e^{-\Gamma_{1}t/2 - im_{1}t} - e^{-\Gamma_{2}t/2 - im_{2}t}) \\ \frac{p}{2q}(e^{-\Gamma_{1}t/2 - im_{1}t} - e^{-\Gamma_{2}t/2 - im_{2}t}) & \frac{1}{2}(e^{-\Gamma_{1}t/2 - im_{1}t} + e^{-\Gamma_{2}t/2 - im_{2}t}) \end{pmatrix}$$

- State evolution (Operator evolution)
 - Neglect CPV and decay ($\Gamma \ll \Delta m$):

Schrödinger density matrix $\rho = \frac{I_2 + \vec{R} \cdot \vec{R}}{2}$ picture $\frac{d\rho(t)}{dt} = -i[H,\rho(t)] = \left(\vec{X}\times\vec{R}(t)\right)\cdot\vec{\sigma},$ $\frac{d\vec{R}(t)}{\vec{R}(t)} = \vec{X} \times \vec{R}(t).$

• Precession around $\vec{X} = (\Delta m, 0, 0)$

- Example operator $\sigma_z |M\rangle = + |M\rangle$, $\sigma_z |\bar{M}\rangle$
 - Flavor tagging at different times \implies both σ_z and σ_v

$$\begin{array}{l} \underline{\cdot \vec{\sigma}} \\ \underline{\cdot \vec{\sigma}} \\ picture \end{array} \quad \text{operator } A = \vec{a} \cdot \vec{\sigma} \\ \\ \frac{dA(t)}{dt} = i[H, A(t)] = -\left(\vec{X} \times \vec{a}(t)\right) \cdot \vec{\sigma}, \\ \\ \frac{d\vec{a}(t)}{dt} = -\vec{X} \times \vec{a}(t). \end{array}$$

$$\bar{M} = - \left| \bar{M} \right\rangle$$

Collapse the superposition

Decay final state that is NOT a CP eigenstate: (e.g. $B^0 \to \ell^+ \nu X^-$ while $\bar{B}^0 \to \ell^- \bar{\nu} X^+$)

$$M \to f \text{ with } CP | f \rangle = | \bar{f} \rangle \neq | f \rangle: \text{ projection}$$

• Decay rate asymmetry to f, \overline{f} :

$$(N_f - N_{\bar{f}}) \sim \langle \sigma_z \rangle = R_z$$

Observable:

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} \left(R_z \cos(\Delta m t) - R_y \sin(\Delta m t) \right) \Gamma_{M \to f}$$

• Both R_v and R_z at t = 0 are obtained as they oscillated into each other.

ect to $|M\rangle$, $|\bar{M}\rangle$ with $P_{M/\bar{M}} = \frac{1 \pm R_z}{2}$

 $\Delta m \approx 27 \,\Gamma$, slightly damped oscillation

Collapse the superposition

• Two kinds of decay final states, CP eigenstate or not

$$M \to f$$
 with $CP |f\rangle = |\bar{f}\rangle \neq |f\rangle$: project to $|M\rangle$, $|\bar{M}\rangle$ with $P_{M/\bar{M}} = \frac{1 \pm R_z}{2}$, (oscillates with R_y)
 $M \to f_\eta$ with $CP |f_\eta\rangle = \eta |f_\eta\rangle$: project to $|M_1\rangle$, $|M_2\rangle$ with $P_{M_1/M_2} = \frac{1 \pm R_x}{2}$

$$M \to f \text{ with } CP |f\rangle = |\bar{f}\rangle \neq |f\rangle: \text{ project to } |M\rangle, |\bar{M}\rangle \text{ with } P_{M/\bar{M}} = \frac{1 \pm R_z}{2}, \text{(oscillates with } R_y)$$
$$M \to f_\eta \text{ with } CP |f_\eta\rangle = \eta |f_\eta\rangle: \text{ project to } |M_1\rangle, |M_2\rangle \text{ with } P_{M_1/M_2} = \frac{1 \pm R_z}{2}$$

 $ho_{_M}=rac{\mathbb{1}_2+R_i\sigma_i}{}$ $|M_{1/2}\rangle \propto |M\rangle \pm |\bar{M}\rangle$

	$\operatorname{Br}(M \to f)$		
10^{-4}	$B^0_d o \ell^+ \nu_\ell X^-$	$(20.66 \pm 0.56)\%$	
) ⁻⁴	$B^0_s \to \ell^+ \nu_\ell X^-$	$(19.2 \pm 1.6)\%$	

Combine different channels?

Collapse the superposition

— x direction in the Bloch vector space

• Conside a meson that only decay to flavor eigenstate $|f\rangle$ (such as semileptonic) or CP-even eigenstate $|f_+\rangle$

$$\begin{split} \Gamma_{M(t) \to f_{+}} &= \frac{1 + R_{x}(t)}{2} \Gamma_{M_{1} \to f_{+}} = (1 + R_{x}(t)) \Gamma_{M \to f_{+}} \\ & \underbrace{M(t) \to f/\bar{f}}_{2} \text{ depend on } R_{x} \\ & \text{affected by branching fraction} \\ & \text{ecay to both } f_{+} \text{ and } f/\bar{f} \\ & \text{n't decay to } f_{+}, \text{ only } f/\bar{f} \\ & \text{el is enough. e.g. } B_{s} \to \ell^{+} \nu_{\ell} X + h \cdot c \,. \end{split}$$

- Both $M(t) \rightarrow f_+$ and
 - $R_x = 1, M_1$ can de
 - $R_r = -1, M_2$ cal
- Semi-leptonic channel

Observables in semileptonic decay channel

- $ho_{_{\!M\!M}}=rac{\mathbbm{1}_4+}{-}$ • Reconstruct ρ_{MM} at t = 0.
- One meson:
 - $1 d(N_f N_f)$ $\overline{N_0}$ dt $N_f - N_{\bar{f}} \Longrightarrow R_v, R_z$ $N_f + N_{\bar{f}} \Longrightarrow R_x$
- Meson pair:
 - Four observal

bles from the correlation between the above two

$$\mathcal{H}_A \otimes \mathcal{H}_B$$
 $N_{f\bar{f}}$: meson A decay to f and meson B decay to \bar{f}
 $I_2 \otimes I_2$ \longrightarrow $N_{tot} = N_{ff} + N_{\bar{f}f} + N_{f\bar{f}} + N_{\bar{f}\bar{f}}$
 $\sigma_z \otimes \sigma_z$ \longrightarrow $A_{ff} = N_{ff} - N_{\bar{f}f} - N_{f\bar{f}} + N_{\bar{f}\bar{f}} = N_{like} - N_{unlike}$
 $\sigma_z \otimes I_2$ \longrightarrow $A_f^A = N_{ff} + N_{f\bar{f}} - N_{\bar{f}f} - N_{\bar{f}\bar{f}}$
 $I_2 \otimes \sigma_z$ \longrightarrow $A_f^B = N_{ff} - N_{f\bar{f}} + N_{\bar{f}f} - N_{\bar{f}f}$

$$\rho_{MM} = \frac{\mathbb{1}_4 + R_i^{\mathcal{A}} \sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}} \mathbb{1}_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j}{4}$$
$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} \left(R_z \cos(\Delta m t) - R_y \sin(\Delta m t) \right) \Gamma_{M \to f}$$
$$\frac{1}{N_0} \frac{d(N_f + N_{\bar{f}})}{dt} = e^{-\Gamma t} (\cosh(\Delta \Gamma t/2) - R_x \sinh(\Delta \Gamma t/2)) \Gamma_{M \to f}$$

Sensitivity estimation

- We consider a C-odd flavor state $(|M\bar{M}\rangle |\bar{M}M\rangle)/\sqrt{2}$
- B_{s} pair
 - *x*-direction is hard to measure, *y* and *z* are the same
- Feasibility:
 - $B_{s}B_{s}$: 10⁵ ~ 10⁶ at LHCb (HL-LHC)
 - More B_s and B_d at BelleII, the reconstruction of individual decay time is developing.
 - *KK*: 8×10^9 at KLOE and KLOE-2, a fraction of 10^{-5} decay to lepton in the first period we consider.

	$B_s^0 \bar{B}_s^0$ fitted	$K^0 ar{K}^0$ fitted
$R_x^\mathcal{A}$	-0.01 ± 0.06	-0.002 ± 0.006
$R_x^{\mathcal{B}}$	-0.01 ± 0.06	-0.003 ± 0.006
$R_y^\mathcal{A}$	0.000 ± 0.003	0.005 ± 0.006
$R_z^{\mathcal{A}}$	0.000 ± 0.003	0.003 ± 0.005
$R_y^{\mathcal{B}}$	0.000 ± 0.003	0.005 ± 0.006
$R_z^{\mathcal{B}}$	0.001 ± 0.003	0.002 ± 0.004
C_{xx}	-1.2 ± 1.0	-1.005 ± 0.012
C_{yx}	0.00 ± 0.06	0.005 ± 0.008
C_{zx}	0.00 ± 0.05	0.006 ± 0.006
C_{xy}	0.00 ± 0.05	0.006 ± 0.007
C_{xz}	0.00 ± 0.05	0.004 ± 0.006
C_{yy}	-1.001 ± 0.004	-1.003 ± 0.008
C_{yz}	0.001 ± 0.003	0.000 ± 0.007
C_{zy}	0.000 ± 0.003	0.000 ± 0.006
C_{zz}	-1.000 ± 0.003	-1.001 ± 0.003
Concurrence	1.1 ± 0.5	1.005 ± 0.007

Tab. Statistical uncertinty with 10^6 events

[KC, T. Han, M. Low and T. Wu, in preparation]

Usually no first principle calculation of the meson flavor states, but measuring it is possible!

Some other topics beyond quantum tomography: quantum process tomography, QI and model building, etc

Spin states $t\bar{t}, \tau^+\tau^-W^+W^-\cdots$ Measure decay distribution Theory input on spin analysors $q\bar{q}$ Measure hadron distribution Measure $2 \rightarrow 2$ Theory input on kinematics production mechanism Theory input on the state evolution and decay $B^0 \overline{B}^0, K^0 \overline{K}^0$ Measure oscillation pattern Flavor states Generally no first principle prediction of the flavor state

e.g. see the talk by Zhewei Yin and Alim Ruzi

