Status of Performance

Tracking

- Thanks to SW group, the shift of momentum now fixed (with refined magnet field map)
- Issue of tracking resolution at low pT understood, being fixed by SW group

Vertexing

- ACTS package of vertexing fit integrated in CEPCSW, preliminary results look good
- Study ongoing for physics events and building secondary vertex

Jet Performance

- Working on performance evaluation: differential JER/JES/JAR/JAS, BMR
 - Latest development of CyberPFA (can reach ~3.8% BMR) now integrated in the CEPCSW release (tdr24.12.0 last mid-night).
- Next priority for SW group: Geometry/Digi/Reconstruction of Endcap Calo

PID

- Now working on PID performance in physics processes, while dN/dX algorithm optimization ongoing
- Shanzhen and Xuhao working on evaluation of the impact from different ECAL granularity, PID: lamda_c -> p K pi , boosted tau

Chapter content

Physics I	Physics Performance						
1.1	Introduction	2					
1.2	Recap of sub-detector performance	2					
1.3	Detector global performance	2					
	1.3.1 Tracking	3					
	1.3.2 Particle Identification: Photon, Electron and Muon ID	6					
	1.3.3 PID for K, pi, p	8					
	1.3.4 Jet Flavour Tagging	8					
	1.3.5 Jet Energy and Boson Mass Resolution	9					
1.4 Benchmark Physics studies							
	1.4.1 Event Generation	11					
	1.4.2 Analysis Tools	12					
	1.4.3 Higgs mass and production cross-section through recoil mass	12					
	1.4.4 Branching ratios of the Higgs boson: h -> bb, cc, ss, WW, gg, $\mu^{+}\mu^{-}$	14					
	1.4.5 More Benchmarks	16					
1.5	1.5 Challenges & Plan						
	1.5.1 Methods & Considerations for Calibration, Alignment	17					
	1.5.2 Strategy for the measurement of absolute luminosity	21					
	1.5.3 Plan of the use of resonant depolarization for W/Z mass	21					
	1.5.4 Brief mention how the physics performance studies influence fur	ther					
	technology decisions/detector optimization	21					
1.6	1.6 Summary						

Comments/Recommendations on Performance

The planned list of channels looks a bit too high for a few months of work, better to focus on demonstrating that the reference detector reaches adequate performance for physics

- Select fewer channels, aimed at demonstrating that the reference detector reaches adequate performance for physics. Include some simple topology (e.g. Z→mumu). Encompass H, Z, W and top physics.
- Foresee in the TDR results and figures about performance on basic objects (leptons, photons, jets) as a function of energy and polar angle
- A measurement of V_cs during the WW run is probably a more relevant benchmark than V_cb;
- The channel to be used for the electroweak mixing angle measurement should be clarified

Priority: working closely					
with software team for					
the development and					
performance studies of					
basic objects					

Plans:

	- +				
H→ss/cc/sb		⊂>	Process @ c.m.e←	Domain←	Relevant Det. Performance↩
H→inv Vcb	-	Z→µµ<⊐	Z@ 91.2 GeV↩	Z←⊐	lepton ID, tracking←
W fusion Xsec	-	Н→үү<⊐	qqH<⊐	Higgs←	photon ID, EM resolution↩
CKM angle $\gamma - 2\beta$	-	Higgs recoil←	ℓℓH<ੋ	Higgs↩	Lepton ID, track dP/P↩
Weak mixing angle	-	H→ss←	vvH @ 240 GeV<	Higgs←	PID, Vertexing, PFA + JOI←
Higgs recoil H→bb, gg	-	H→inv↩	qqH<⊐	Higgs/NP←	PFA, MET←
H→μμ	-	Vcs/Vcb←	WW→ℓvqq @ 240/160 GeV↩	Flavor←	PFA, JOI + PID (lepton, tau)↩
Η→γγ	-	H→LLP←	ℓℓH<ੋ	NP←	TPC, TOF, calo, muon detectors↩
W mass & width Top mass & width	lth dth				
Bs→1/1/d	-	H→μμ<⊐	qqH<⊐	Higgs←	lepton ID, tracking, OTK←
$\frac{BC \rightarrow \tau \nu}{BC \rightarrow \tau \nu}$	-	Top mass & width↩	Threshold scan @ 360 GeV↩	EW←	Beam energy<-
$B_0 \rightarrow 2 \pi^{\nu}$ H \rightarrow LLP	-	Weak mixing angle↩	Z→bb @ 91.2 GeV<-	EW←	JOI
H→aa→4γ	_		-		·+