

Status of Centimeter Strip AC-LGAD Development

Yunyun Fan December 24, 2024

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Comment & Recommendations:

"Reconsider the size of the AC-LGADs and take both the performance (rate effects, time resolution and achievable position resolution) and expected yield into consideration in order to reach a cost effective solution "

"The capacitance of some sensors will be large (up to ~10 pF) which will make the noise jitter and rise time such that it will be difficult to achieve the desired time resolution."

Which size is suitable for our ref-TDR?

Review the current design status of the centimeter strip AC-LGAD

Current application

AC-LGAD would be applied at EIC , also other experiments (such as Pioneer, FCC-ee et all)

- EIC barrel strip: 25/35 ps, 30 µm

– TOF-PID, tracker

Preliminary Design Report in 2025 for EIC

Subsystem	Area (m^2)	dimension (<i>mm</i> ²)	channel count	timing σ_t (ps)	spatial σ_x (μ m)	material budget (X/X_0)
Barrel TOF	12	0.5*10	2.4M	35	$30 (r \cdot \phi)$	3%
Forward TOF	1.1	0.5*0.5	3.2M	25	30(x,y)	5%

5.3 m

Current strip AC-LGAD study

A lot study has been done for strip AC-LGAD

Goal: large area sensors that meet timing/spatial resolution requirements with minimal # of channels

- CNM、FBK、BNL and HPK
- Length: 2 mm, 5 mm, 1 cm (baseline), 2 cm, 2.5 cm
- Pitch: 100 μm , 200 μm , 300 μm , 500 μm (baseline)

BNL

4

FBK

Centimeter strip AC-LGAD

1 cm strip AC-LGAD as baseline of EIC ToF and tracker

- Laser test results: for spatial resolution and charge sharing study
- Test beam results: efficiency, time resolution, spatial resolution
- Irradiation campaign

Test beam for 1 cm strip AC-LGAD

Fermilab Test Beam Facility

HPK Strip Sensor for BTOF

1 cm long, 500 μm pitch, 50 metal

HPK_W2_3_2_50T_1P0_500P_50M_E240, 180V Position resolution [µm] **Fime resolution [ps]** 60 Position resolution observed 50 Time resolution: multi-channel 50 40 40 30 30 20 20 10 10 0_2 -1.5 -0.5 -1 0 0.5 1 1.5 2 Track x position [mm]

Time resolution: 35 ps

Spatial resolution: $18 \ \mu m$

will try 1000 µm in the future to reduce the readout channel !

Irene Dutta et.al. https://arxiv.org/pdf/2407.09928

Efficiency of the Strip AC-LGAD

- Combined efficiency: ~98-100% efficiency
 - Efficiency drop under the metal
 - Combining strips would improve ineffciency

Irene Dutta et.al. https://arxiv.org/pdf/2407.09928

Irradiation Campaign

EIC requirement: 1e12 N_{eq}/cm²

- Irradiation up to 5e14 N_{eq} /cm²
- No significant change for the gain layer doping up to 1e13 N_{eq}/cm^2
- No significant change for charge sharing up to 1e14 N_{eq}/cm^2

Position [µm]

2 cm AC-LGAD problem

Longer strip:

- worse time resolution: rise time , Pmax
- worse charge sharing: length , N+ layer

2 cm AC-LGAD problem

Longer strip :

- worse charge sharing: length , N+ layer

Jennifer Ott et.al.

Charge sharing problem for 2 centimeter AC-LGAD

Charge sharing for 2 cm centimeter strip AC-LGAD

- Charge sharing to far-away strips has been the main problem in long strip in the past
- Significant improvement in recent sensors

Jeniff et.al. Developments in AC-LGADs for future colliders and nuclear physics experiments

Charge Sharing Problem Sovled for 2cm

For HPK E600 type sensors, strip length is indeed confirmed to increase charge sharing with the neighboring strip, however likely **not to a detrimental degree (15% at the next strip)**

Developments in AC-LGADs for future colliders and nuclear physics experiments

2 cm AC-LGAD optimization

Time resolution for the 2 cm AC-LGAD (to be optimized in the future)

- Pmax vs Length
- Rise time to be tested (no available data now)

Higher bias voltage for longer strip

In the futre:

Thinner design (20 µm) will improve the time resolution. (FBK plan)

HPK results

Capacitance varies with the frequency: from several pF to hundreds pF

- Capacitance VS length
- Nearly exponential relation rising slower when frequencies increase

Need to decide which should be the input impendence for the ASIC

✓ Plan to test AC-LGAD with noise measurement method (such with amplifiers, ATLAS Altiroc and domestic ASICs)

Capacitance to be decided

Large AC-LGAD yield

HPK production for EIC:

- 2.2x3.2 cm with 1cm strip segments (yield ~ 30% oral ?)
- 4 x 3.2 cm with 1cm strip segments

DRD3 Simone.et.al.

IME:

2x2 cm LGAD (~50%) , 4x4 AC-LGAD (unknow ? Estimated 6.25%)

Conclusion

I cm length strip AC-LGAD: matured in international community

- EIC: 35 ps, 30 μm
- 2.2x3.2 cm with 1cm strip segments , 500 μm pitch
- Test beam results: 35 ps, 18 µm
- Efficiency: ~98%-100%
- Meet the requirement of radiation hardness
- 2cm length strip: HPK E600 sample
 - Charge sharing reduced with higher n+ resistivity (large pitch, high N+)
 - Time resolution need to be optimized: Pmax ,rise time
 - Yield : for example 2 x 3 cm, (<50% from IME ~ 30%? from HPK AC-LGAD)
 - Capacitance varies with frequency, nearly exponential relation with length

Conclusion

- Through DRD3 group, cooperated with INFN (Università del Piemonte Orientale): 12 samples with 2 cm would be tested
- 4cm length strip: 4 cm x 5 cm strip (OTK Baseline in ref-TDR)
 - Yield (estimated to be ~6% from IME LGAD, ~0.8% from HPK?)
 - No tested data
 - Power consumption will increase 。。。。
 - Sample available until the mid of next year

Plan:

- larger pitch
- Optimize the rise time and Pmax
- Decide the input capacitance: noise measurement, to be tested with ASIC

Thank you for your attention!

中國科學院為能物品加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review