Recent Heavy Flavor results from ATLAS

Yue Xu University of Washington

ATLAS

IHEP EPD seminar

17th Dec, 2024

The Large Hadron Collider

CERN Prévessin

- The largest particle collider in the world
 - 27km circumference
 - Four major experiments: CMS, LHCb, ATLAS, ALICE

LHC 27 km

The ATLAS detector

- General-purpose detector
- Designed in layers to observe different types of particles
- Cumulative luminosities
 - Run 2 (2015-2018):140fb⁻¹ (physics)
 - Run3 (2022-): 183fb⁻¹ (recorded)

The ATLAS Pixel detector

- Pixels: 3 barrel layers + 3 end-cap disks (per side)
 - Operating since 2008
- Insertable B-Layer (IBL): inserted during the first long LHC shutdown (2013-2014)
 - Operating since 2015
 - Five times better rejection of b-tagging than Run 1

Pixel performance in 2024

- 0.1% deadtime contribution (0.3% in 2023)
- Stable running without major issues, even with higher pile-up
 - Thanks to lots of hardware maintance, and improvements on software and firmware

B physics in ATLAS

- Analyses focus mostly on final states with muons
- Dedicated B-physics triggers
- Excellent track and muon identification with the goodness of the inner detector and muon spectrometer

In this talk

- B^0 meson lifetime measurement
- Cross-section measurement of J/ψ and $\psi(2S)$ mesons
- Di-charmonium resonances

ATLAS full run 2 (2015-2018) data with a luminosity of $140 {\rm fb}^{-1}$ are used

B^0 meson lifetime measurement

arXiv:2411.09962

Introduction

- Studies on b-hadron lifetimes test our understanding of the weak interaction
- In the heavy-quark expansion (HQE) framework, the total decay rate $\Gamma=1/\tau$ of a weekly decay heavy hadron B_a can be calculated by

$$\Gamma(\mathcal{B}_q) = \Gamma_3 + \delta \Gamma(\mathcal{B}_q)$$
 leading

Free *b*-quark decay:

free of non-perturbative uncertainties**0** Looks like the muon decay

$$\Gamma_3 \propto \frac{G_F^2 m_b^5}{192\pi^3} V_{cb}^2$$

 Quark masses are difficult to define, huge dependence on definition can be reduced by higher order **perturbative corrections**

Power-suppressed terms on the HQE:

+ suppressed with at least 2 powers of $1/m_b \Rightarrow$ small

subleading

0 Individual contributions are products of **perturbative** Wilson coefficients and **non-perturbative matrix elements** (determined with lattice-QCD, sum rules and/or from fits of experimental data of inclusive semi-leptonic decays - V_{cb})

JHEP01(2023)004

- Predicted $\Gamma_d = 0.63^{+0.11}_{-0.07}$ ps⁻¹, large theoretical uncertainties due to m_b^5 in Γ_3
- Predicted $\Gamma_d/\Gamma_s = 1.003 \pm 0.006$, smaller uncertainties as Γ_3 cancels out
- Lifetimes can also be used to test new physics models:

 $\Gamma(\mathscr{B}_q) = \Gamma_3^{\rm SM} + \Gamma_3^{\rm BSM} + \delta\Gamma(\mathscr{B}_q)^{\rm SM} + \delta\Gamma(\mathscr{B}_q)^{\rm BSM}$

Motivation

• Effective lifetime τ_{B^0} measured in $B^0 \to J/\psi K^{*0}$ is related to Γ_L and Γ_H (decay widths of light and heavy mass eigenstates of the $B^0 - \overline{B^0}$ system:

$$\tau_{B^0} = \frac{1}{\Gamma_d} \frac{1}{1 - y^2} (\frac{1 + 2Ay + y^2}{1 + Ay})$$

 $\Gamma_d = (\Gamma_L + \Gamma_H)/2$, average decay width

 $y = \Delta \Gamma_d / (2\Gamma_d) = (\Gamma_L - \Gamma_H) / (2\Gamma_d), \text{ normalised width difference}$ The asymmetry A depending on the amplitudes of final state R_L^f and R_H^f : $A = \frac{R_H^f - R_L^f}{R_H^f + R_L^f}$

- Experimental value of Γ_d can be extracted with measured τ_{B^0} and values of y and A from <u>Heavy Flavour Averaging group (HFLAV)</u>
- Decay width ratio Γ_d/Γ_s can then be calculated with ATLAS measured $\Gamma_s = 0.6703 \pm 0.0014 (\text{stat.}) \pm 0.0018 (\text{syst.}) \text{ ps}^{-1} \text{ from } B_s^0 \rightarrow J/\psi\phi \text{ Eur. Phys. J. C 81} (2021) 342$

Reconstruction and selection

- Di-muon triggers with J/ψ mass window requirement
- $B^0 \rightarrow J/\psi K^{*0}$ reconstruction:
 - $J/\psi \rightarrow \mu^+\mu^-$: fit oppositely charged muon pairs to a common vertex, $\chi^2/N_{dof} < 10$
 - $K^{*0} \rightarrow K^+ \pi^-$: consider both $K^+ \pi^-$ and $K^- \pi^+$, and choose the one closer to K^{*0} mass from PDG
 - B^0 candidate: $J/\psi \to \mu^+\mu^-$ and $K^{*0} \to K^+\pi^-$ are fitted to a common vertex with J/ψ mass constraint. The candidate with smallest χ^2/N_{dof} is selected
- Primary vertex (PV) candicate: the one with smallest 3D impact parameter a_0 is used
 - a_0 : minimum distance between PV and the line extrapolated from the reconstructed B^0 vertex in the direction of B^0 momentum
- For each B^0 candidate, the proper decay time t is determined:

$$t = \frac{L_{xy}m_B}{p_{T_B}}$$

Fit model

- 2-dimensional unbinned maximum-likelihood fit on B^0 mass and proper decay time is performed to extract B^0 lifetime:
 - Signal model: $B^0 \to J/\psi K^{*0}$ decay
 - Background model:
 - Prompt: J/ψ from $pp \to J/\psi X$ process combining with a random K^{*0}
 - Combinatorial: J/ψ from b-hadron decay combining with a random K^{*0}

$$\ln L = \sum_{i=1}^{N} w(t_i) \ln[f_{\text{sig}}\mathcal{M}_{\text{sig}}(m_i)\mathcal{T}_{\text{sig}}(t_i, \sigma_{t_i}, p_{\text{T}_i}) + (1 - f_{\text{sig}})\mathcal{M}_{\text{bkg}}(m_i)\mathcal{T}_{\text{bkg}}(t_i, \sigma_{t_i}, p_{\text{T}_i})]$$
Signal mass probility density
function (PDF) and time PDF
$$P_{\text{sig}}(t_i | \sigma_{t_i}, p_{\text{T}_i}) = E(t', \tau_{B^0}) \otimes R(t' - t_i, \sigma_{t_i})$$
Background mass PDF and time PDF

Uncertainties

Source of uncertainty	Systematic uncertainty [ps]
ID alignment	0.00108
Choice of mass window	0.00104
Time efficiency	0.00130
Best-candidate selection	0.00041
Mass fit model	0.00152
Mass-time correlation	0.00229
Proper decay time fit model	0.00010
Conditional probability model	0.00070
Fit model test with pseudo-experiments	0.00002
Total	0.0035

Statistical uncertainty: 0.0012 ps

- Systematic uncertainty dominates
 - Mass-time correlation, the correlation between invariant mass and the proper decay time, has the largest contribution

Mass and proper decay time

- The invariant mass and proper decay time projections of the fit
- B^0 signal events: 2450500 ± 2400

Measured effective lifetime

• The measured B^0 effective lifetime is:

```
\tau_B^0 = 1.5053 \pm 0.0012(stat.) \pm 0.0035(syst.) ps
```

• A consistency and stability test is performed with B^0 lifetime fitted separately for each data-taking period (2015+2016, 2017 and 2018)

Compare to previous results

- ATLAS B^0 lifetime result is compitable with most of the other measurements
- Compare to the previous ATLAS results, the new measurement significantly reduces systematic uncertainty by a factor of ~4.7
 - Better vertexing after installing IBL

Γ_d and Γ_d/Γ_s

• Γ_d is extracted from measured τ_B^0 with input values $2y = \Delta \Gamma_d / \Gamma_d = 0.001 \pm 0.010$ and asymmetry $A = -0.578 \pm 0.136$ from <u>HFLAV</u>: $\tau_{B^0} = \frac{1}{\Gamma_d} \frac{1}{1 - v^2} (\frac{1 + 2Ay + y^2}{1 + Ay})$

 $\Gamma_d = 0.6639 \pm 0.0005 (\text{stat.}) \pm 0.0016 (\text{syst.}) \pm 0.0038 (\text{ext.}) \text{ ps}^{-1}$

- 'ext.' is the uncertainty originating from the HFLAV, calculated from uncertainties of y and A (dominant)
- Compitable with the HQE prediction of $0.63^{+0.11}_{-0.07}$ ps⁻¹

 $\Gamma_d f = \frac{1}{s}$

• Γ_d/Γ_s , ratio of the average decay widths of B^0 and B_s^0 mesons, is also extracted:

 $\Gamma_d / \Gamma_s = 0.9905 \pm 0.0022 (\text{stat.}) \pm 0.0036 (\text{syst.}) \pm 0.0057 (\text{ext.})$

• In agreement with theory predictions of HQE and lattice QCD models

Cross-section measurement of J/ψ and $\psi(2S)$ mesons

Eur. Phys. J. C 84 (2024) 169

Introduction

- J/ψ and $\psi(2S)$ were discovered almost 50 years ago, but the QCD production mechanisms haven't been fully understood
 - Non-prompt production is well predicted by pQCD
 - Prompt production still needs to be understood
- Previous ATLAS measurement about J/ψ production exploited a di-muon trigger, with the high-pT reach limited mainly by the trigger performance to about 100 GeV (Run1 result: <u>Eur. Phys. J. C 76 (2016) 283</u>)
- New measurements of the J/ψ ($\psi(2S)$) meson production with full run-2 data, $140 {\rm fb}^{-1}$
 - Provide a much broader p_T coverage, **8-360 GeV** (**8-140 GeV**)
 - Combine di-muon trigger and single muon trigger
 - Di-muon trigger @ p_T threshold of 4 GeV (2.6 fb $^{-1}$), covering the region $8 < p_T^{di-\mu} < 60~{\rm GeV}$
 - Single muon trigger @ p_T threshold of 50 GeV (140 fb⁻¹), covering the region $60 < p_T^{di-\mu} < 360(140)$ GeV

Di-muon spectrum

- A 2-dimensional unbinned maximum-likelihood fit is performed on di-muon mass and pseudo-proper decay time τ to obtain raw yields
- 34 di-muon p_T intervals and 3 |y| intervals

Uncertainties

- A variety of sources of systematic effects are studied:
 - Fit parameterisation
 - Muon reconstruction and trigger efficiencies
 - Acceptance corrections
- For corss section measurement, systematic uncertainty dominates
 - In low pT range, systematics on trigger and muon reconstruction have a larger impact
 - In high pT range, systematic from fit model dominates

Uncertainties

• For non-prompt fractions and $\psi(2S)$ -to- J/ψ ratios, statistical uncertainty dominate in many bins because the systematic uncertainties partially cancel out

22

Cross-section measurements

- The measured doubledifferential cross-sections of prompt and non-prompt J/ψ $(\psi(2S))$ production
 - Prompt cross-sections are slightly larger at low p_T range

Non-prompt fraction

- Non-prompt fractions increase steadily with p_T up to 100 GeV
- Constant for both J/ψ and $\psi(2S)$ in the high p_T range
 - Similar p_T -dependences for prompt and non-prompt cross section at high p_T

$\psi(2S)$ -to- J/ψ ratio

- The production ratios of $\psi(2S)$ relative to J/ψ for both prompt and non-prompt
 - Steadily increasing with increasing p_T
 - No obvius y dependence

Compare to theory prediction

- Generally, all the considered models show a slower-than-observed decrease of cross section with p_T
 - Prompt: much harder p_T spectrum is predicted
 - Non-prompt: generally better at low p_T , but overestimate at high p_T

di-charmonium resonances

Phys. Rev. Lett. 131 (2023) 151902

Introduction

Charmonium ($c\bar{c}$) -like exotic hadrons

Rev. Mod. Phys. 90, 15003 (2018)

- A series of XYZ states was observed
- Lack observations of full-heavy tetraquarks which can make the theory-experiment comparison easier
 - First proposal of full-charm tetraquark (1975): <u>Prog. of Theor. Phys., Vol 54, No. 2</u>
 - The first calculation of the full-charm tetraquark mass (1981): <u>Z. Phys. C 7</u> (1981) 317
 - First observation of potential full-charm tetraquark X(6900) (2020): LHCb <u>Science</u> <u>Bulletin 65 (2020) 1983</u>

XYZ states:

- X: neutral particle with $J^{PC} \neq 1^{--}$
- Y: neutral particle with $J^{PC} = 1^{--}$
- Z: charged particle

Signal process

• Tetraquark $(c\bar{c}c\bar{c}) \rightarrow J/\psi + J/\psi$ or $J/\psi + \psi(2S) \rightarrow 4\mu$

- How to reconstruct the 4μ candidate?
 - Find four muons with two opposite-charge pairs
 - Fit their inner detector tracks to a common vertex
 - Each pair is revertexed with a J/ψ or $\psi(2S)$ mass constraint

Signal process

• Tetraquark $(c\bar{c}c\bar{c}) \rightarrow J/\psi + J/\psi$ or $J/\psi + \psi(2S) \rightarrow 4\mu$

More than one candidate in the event?

The best candidate is chosen with $\sum \chi^2 / N$ of the 4μ and di-muon vertices

- How to reconstruct the 4μ candidate?
 - Find four muons with two opposite-charge pairs
 - Fit their inner detector tracks to a common vertex
 - Each pair is revertexed with a J/ψ or $\psi(2S)$ mass constraint

Background sources

- Prompt backgrounds:
 - Single parton scattering (SPS): a pair of ψ mesons can be produced in a single interaction
 - Double parton scattering (DPS): a pair of ψ mesons can be produced in two separate interactions of gluons or quarks
- Non-prompt ($b\bar{b} \rightarrow J/\psi + J/\psi(\psi(2S)) \rightarrow 4\mu$)
- Single J/ψ background and non-peaking background containing no real J/ψ candidate (Others)
- In the di- J/ψ channel, the feed-down from $J/\psi + \psi(2S)$ channel to di- J/ψ channel is treated as an additional background

Event selections and analysis regions

- Baseline selections:
 - $p_T > 4, 4, 3, 3$ GeV and $|\eta| < 2.5$ for the four muons
 - J/ψ and $\psi(2S)$ mass requirement
 - Vertex fit quality (χ^2/N) and L_{xy} requirements

Reduce non-prompt background

У

Decay Vertex

Signal	Vertex cuts:	$m_{4\mu} < 7.5~{ m GeV},$ $\Delta R < 0.25~{ m between~charmonia}$		
SPS	$ L_{xy}^{di-\mu} < 0.3 \text{ mm}$ $L_{xy}^{4\mu} < 0.2 \text{ mm}$	7.5 GeV < $m_{4\mu}$ < 12.0 GeV		
DPS	$\chi^2_{4\mu}/N < 3$	14.0 GeV < $m_{4\mu}$ < 25.0 GeV		
Non-prompt region	Reverse vertex cuts: $\chi^2_{4\mu}/N > 6$ and $ L^{di-\mu}_{xy} > 0.4$ mm			

Feed-down background

• In the di- J/ψ channel, the feed-down from $J/\psi + \psi(2S)$ channel to di- J/ψ channel is treated as an additional background

• The normalisation is extracted with the fitted signal yields in the $J/\psi + \psi(2S)$ channel

$$N_{\rm fd} = \frac{\mathcal{B}'\epsilon'}{\mathcal{B}\left(\psi(2S) \to \mu\mu\right)\epsilon} N$$

Feed-down background

• In the di- J/ψ channel, the feed-down from $J/\psi + \psi(2S)$ channel to di- J/ψ channel is treated as an additional background

• The normalisation is extracted with the fitted signal yields in the $J/\psi + \psi(2S)$ channel

$$N_{\rm fd} = \underbrace{\mathcal{B}'\epsilon'}_{\mathcal{B}(\psi(2S) \to \mu\mu)\epsilon} N_{\rm signal\ eff.\ in\ J/\psi + \psi(2S)}_{\rm feed-down\ eff.\ in\ di-J/\psi}$$

$$[\mathcal{B}(\psi(2S) \to J/\psi + X) + \mathcal{B}(\psi(2S) \to \gamma\chi_{cJ})\mathcal{B}(\chi_{cJ} \to \gamma J/\psi)]\mathcal{B}(J/\psi \to \mu\mu)_{X:\ \pi^+\pi^-,\ \pi^0\pi^0,\ \eta,\ \pi^0}$$

Fit models

• Unbinned maximum likelihood fits are performed to extract the signal parameters (e.g. mass m, width Γ)

$$\mathcal{L} = \mathcal{L}_{SR}\left(\vec{\theta}, \vec{\lambda}\right) \cdot \mathcal{L}_{CR}\left(\vec{\theta}\right) \cdot \prod_{j=1}^{K} G\left(\theta_{j}^{\prime}; \theta_{j}, \sigma_{j}\right)$$

- Fit regions:
 - Fit SR: $m_{4\mu} < 11$ GeV and $\Delta R < 0.25$
 - Fit CR: $m_{4\mu} < 11$ GeV and $\Delta R \geq 0.25$
- Only systematics affecting the mass spectrum shape are included (backup)

Fit regions in di- J/ψ channel

• SPS mass shape is modelled well

- A broad structure near threshold from 6.2 to 6.8 GeV
- A narrow structure around 6.9 GeV

Fit regions in $J/\psi + \psi(2S)$ channel

 SPS mass shape is modelled well

- A narrow structure around
 6.9 GeV
- Hint for another narrow structure around **7.2 GeV**

Signal model

- The di- J/ψ channel:
 - Model A: 3-peak signal model with interference among signals
 Resolution function

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)$$

 Model B: 2-peak model with the first one interfering with the SPS background plus a standalone peak

$$f(x) = \left(\left| \frac{z_0}{m_0^2 - x^2 - im_0 \Gamma_0(x)} + A(x)e^{i\phi} \right|^2 + \left| \frac{z_2}{m_2^2 - x^2 - im_2 \Gamma_2(x)} \right|^2 \right) \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)$$

phase space factor

Signal model

- The $J/\psi + \psi(2S)$ channel:
 - Model α : the same peaks with interference observed in the di- J/ψ channel also decaying into $J/\psi + \psi(2S)$ plus a standalone peak

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3 \Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\theta)$$

• Model β : only one single peak

Fit results in di- J/ψ channel

- Two signal models are tested:
 - Model A: three interfering signal peaks
 - Model B: two signal peaks
- The peak around 6.9 GeV is consistent with the LHCb observed X(6900) (<u>Science Bulletin 65</u> (2020) 1983), with significance far above 5σ

Fit results in $J/\psi + \psi(2S)$ channel

- Model α : the same peaks observed in the di- J/ψ channel also decaying into $J/\psi + \psi(2S)$ plus a standalone peak.
- **Model** β : only one signal peak
- The signal significance is 4.7σ (4.3σ) for model α (β). The significance of the 2nd peak (7.2 GeV) reaches
 3.0σ, also hinted by LHCb and CMS (Phys.Rev.Lett. 132 (2024) 11, 111901) in the di-J/ψ spectrum

$J/\psi + \psi(2S)$	model α	model β
<i>m</i> ₃	$7.22 \pm 0.03^{+0.01}_{-0.04}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3	$0.09 \pm 0.06^{+0.06}_{-0.05}$	$0.51 \pm 0.17 ^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\%^{+25\%}_{-15\%}$	$\pm 20\% \pm 12\%$

Summary

- Recent results in heavy flavour physics by ATLAS with full Run 2 data are presented:
 - $B^0 \rightarrow J/\psi K^{*0}$ lifetime measurement
 - Measurement of J/ψ and $\psi(2S)$ differential cross-section
 - Search for di-charmonium excesses in four-muon final state
- Cover a broad spectrum of the most interesting topics
- New measurements with the Run 2 and Run 3 data are ongoing: stay tuned!

Thanks

The ATLAS Pixel detector

Barrel and Disk

- Three barrel layers, radii 50.5, 88.5, 122.5 mm
 - Innermost layer known as B-Layer
 - Active area: $1.45m^2$
 - Readout channels: 67M
- Three end-cap disks (per side)
 - Active area: $0.28m^2$
 - Readout channels: 13M
- Operating since 2008

Module

- 16 FE-I3 chips with 250nm CMOS + 1 Module Control Chip
- 1 Planar n-in-n sensor, $250\mu m$ thick
- Radiation hard: 50 Mrad, $\sim 1 \times 10^{15} n_{eq}$ cm⁻²

The insertable B-Layer

- Insertable B-Layer (IBL) was inserted during the first long LHC shutdown (2013-2014),
 - 14 staves, each at radius 33.5mm
 - Active area: $0.15m^2$
 - Readout channels: 12M
- Operating since 2015
- Five times better rejection of b-tagging than Run 1

Module

- FE-I4 in 130 nm CMOS
- $200\mu m$ thick for planar sensor and $230\mu m$ for 3D sensors
- Radiation hard: 250 Mrad, ~ $2 \times 10^{15} n_{\rm eq} {\rm ~cm}^{-2}$

B^0 meson lifetime measurement: PDFs

- Mass PDFs
 - Signal: Johnson S_U -distribution

$$\mathcal{M}_{\text{sig}}(m_i) = \frac{\delta}{\lambda \sqrt{2\pi} \sqrt{1 + \left(\frac{m_i - \mu}{\lambda}\right)^2}} \exp\left[-\frac{1}{2}\left(\gamma + \delta \sinh^{-1}\left(\frac{m_i - \mu}{\lambda}\right)\right)^2\right]$$

• Background: polynomial + sigmoid function

$$\mathcal{M}_{\text{bkg}}(m_i) = f_{\text{poly}}(1 + p_0 \cdot m_i) + (1 - f_{\text{poly}}) \left(1 - \frac{s(m_i - m_0)}{\sqrt{1 + (s(m_i - m_0))^2}}\right)$$

- Proper decay time PDFs (resolution functions applied)
 - Signal: exponential function $R(t' t_i, \sigma_{t_i}) = \sum_{k=1}^{3} f_{\text{res}}^{(k)} \frac{1}{\sqrt{2\pi} S^{(k)} \sigma_{t_i}} \exp\left(\frac{-(t' t_i)^2}{2(S^{(k)} \sigma_{t_i})^2}\right)$

$$P_{\text{sig}}(t_i | \sigma_{t_i}, p_{\text{T}_i}) = E(t', \tau_{B^0}) \otimes R(t' - t_i, \sigma_{t_i})$$
$$E(t, \tau_{B^0}) = (1/\tau_{B^0}) \exp(-t/\tau_{B^0}) \text{ for } t \ge 0.$$

• Background:

$$P_{\text{bkg}}(t_i | \sigma_{t_i}, p_{\text{T}_i}) = \left(f_{\text{prompt}} \cdot \delta_{\text{Dirac}}(t') + (1 - f_{\text{prompt}}) \sum_{k=1}^3 b_k \prod_{l=1}^{k-1} (1 - b_l) E(t', \tau_{\text{bkg}_k}) \right) \otimes R(t' - t_i, \sigma_{t_i})$$

Cross-section measurement of J/ψ and $\psi(2S)$ mesons: PDFs

- Mass
 - $J/\psi(\psi(2S))$: Gaussian and Crystal Ball
 - Prompt background: Bernstein polynomials
 - Non-prompt background: Exponential

Cross-section measurement of J/ψ and $\psi(2S)$ mesons

- Spin alignment corrections. Here only show J/ψ differential cross-section and non-prompt production fraction. But were found to be essentially the same for J/ψ and $\psi(2S)$, for the prompt and non-prompt production mechanisms, and also for the three rapidity regions
- Potential bias due to the spinalignment assumption at 60GeV causes a step in the J/ψ non-prompt production at the same point

Compare to theory prediction: prompt

- Non-relativistic QCD approach at next-to-leading order (NLO NRQCD) —> overestimate at high p_T
- NRQCD + transverse degrees of freedom of the initial gluons in the colliding protons (k_T -factorisation model) —> underestimate at low p_T
- Improved Colour Evaporation Model (ICEM) —> harder p_T prediction for both J/ψ and $\psi(2S)$ and underestimate $\psi(2S)$ at low p_T

Compare to theory prediction: non-prompt

- Fixed-order-next-to-leading-log (FONLL) QCD —> good agreement at low p_T , but overestimate J/ψ at high p_T
- General-mass-variable-flavour- number scheme (GM-VFNS) -> similar results as FONLL
- NRQCD model with k_T -factorisation -> underestimate $\psi(2S)$ at low p_T

Introduction

• The quark model was proposed by Gell-Mann and Zweig sixty years ago

• Exotic hadrons were predicted at the same time as conventional $q\bar{q}$ mesons and qqq baryons.

Signal region	Control region	Non-prompt region
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium,		
<i>loose</i> muons, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons,		
$m_{J/\psi} \in [2.94, 3.25]$ GeV, or $m_{\psi(2S)} \in [3.56, 3.80]$ GeV,		
Loose vertex requirements $\chi^2_{4\mu}/N < 40 \ (N = 5)$ and $\chi^2_{di-\mu}/N < 100 \ (N = 2)$,		
Vertex $\chi^2_{4\mu}/N < 3$, $L^{4\mu}_{xy} < 0.2$ m	m, $ L_{xy}^{\text{di-}\mu} < 0.3 \text{ mm}, m_{4\mu} < 11 \text{ GeV},$	Vertex $\chi^2_{4\mu}/N > 6$,
$\Delta R < 0.25$ between charmonia	$\Delta R \ge 0.25$ between charmonia	or $ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$

Pseudo-proper decay time

 $\tau = L_{xy} m(\mu \mu) / p_{\rm T}(\mu \mu)$, where $L_{xy} \equiv \mathbf{L} \cdot \mathbf{p}_{\rm T}(\mu \mu) / p_{\rm T}(\mu \mu)$

53

Figure 4: The 4 μ mass spectrum within [7.5, 24.5] GeV and without the ΔR requirement (a), p_T of the di-charmonium in the SPS control region with 7.5 GeV $< m_{4\mu} < 12.0$ GeV (b), and $\Delta \eta$ between the charmonia in the DPS control region with 14.0 GeV $< m_{4\mu} < 24.5$ GeV (c), in the di- J/ψ channel.

Figure 5: The 4 μ mass spectrum within [7.5, 24.5] GeV and without the ΔR requirement (a), p_T of the di-charmonium in the SPS control region with 7.5 GeV $< m_{4\mu} < 12.0$ GeV (b), and $\Delta \eta$ between the charmonia in the DPS control region with 14.0 GeV $< m_{4\mu} < 24.5$ GeV (c), in the $J/\psi + \psi(2S)$ channel.

• Unbinned maximum likelihood fits are performed

$$\mathcal{L} = \mathcal{L}_{SR}\left(\vec{\alpha}, \vec{\beta}\right) \cdot \mathcal{L}_{CR}\left(\vec{\alpha}\right) \cdot \prod_{j=1}^{K} G\left(\alpha_{j}'; \alpha_{j}, \sigma_{j}\right)$$

- Fit regions:
 - Fit signal region (SR): $m_{4\mu}^{\rm CON} < 11$ GeV and $\Delta R < 0.25$
 - Fit control region (CR): $m_{4\mu}^{\rm CON} < 11~{\rm GeV}$ and $\Delta R \ge 0.25$
- The signal probability density function consists of several interfering S-wave Breit-Wigner (BW) resonances multiplied with a phase space factor and convolved with a mass resolution function.

$$\mathbf{di} - \mathbf{J}/\boldsymbol{\psi}: \ f_{s}(x) = \left|\sum_{i=0}^{2} \frac{z_{i}}{m_{i}^{2} - x^{2} - im_{i}\Gamma_{i}(x)}\right|^{2} \sqrt{1 - \frac{4m_{J/\psi}^{2}}{x^{2}}} \otimes R(\alpha) \qquad BW(x; m_{0}, \Gamma_{0}) = \frac{1}{m_{0}^{2} - x^{2} - im_{0}\Gamma(x)} = \frac{1}{m_{0}^{2} - x^{2} - im_{0}\Gamma(x)} = \frac{1}{m_{0}^{2} - x^{2} - im_{0}\Gamma(x)} \sqrt{\frac{x^{2} - 4m_{J/\psi}^{2}}{m_{0}^{2} - 4m_{J/\psi}^{2}}}.$$

$$I/\boldsymbol{\psi} + \boldsymbol{\psi}(2S): f_{s}(x) = \left(\left|\sum_{i=0}^{2} \frac{z_{i}}{m_{i}^{2} - x^{2} - im_{i}\Gamma_{i}(x)}\right|^{2} + \left|\frac{z_{3}}{m_{3}^{2} - x^{2} - im_{3}\Gamma_{3}(x)}\right|^{2}\right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi}(2S)}{x}\right)^{2}} \otimes R(\alpha) \qquad \Gamma_{3}(x) = \Gamma_{3}\frac{m_{3}}{x}\sqrt{\frac{x^{2} - (m_{J/\psi} + m_{\psi}(2S))^{2}}{m_{3}^{2} - (m_{J/\psi} + m_{\psi}(2S))^{2}}}.$$

Systematic uncertainties

	Uncertainties (I
 Only systematics affecting the mass spectrum shape are relevant 	Uncertainties (I Muon calibrat SPS model para SPS di-charmoni Background MC sa Mass resolut
	Fit bias
	Shape inconsist Transfer fact
	Presence of 4th re

Systematic	di- J/ψ		$\int J/\psi$ +	$\psi(2S)$
Uncertainties (MeV)	m_2	Γ_2	<i>m</i> ₃	Γ_3
Muon calibration	±6	±7	<1	± 1
SPS model parameter	±7	±7	<	:1
SPS di-charmonium $p_{\rm T}$	±7	± 8	<1	
Background MC sample size	±7	± 8	±1	<1
Mass resolution	±4	-3	-1	+2 -4
Fit bias	-13	+10	+9 -10	+50 -16
Shape inconsistency	<1		±4	±6
Transfer factor			±5	±23
Presence of 4th resonance	<1		_	
Feed-down	+4 -1	+6 -2	_	
Interference of 4th resonance		_	-32	-11
P and D-wave BW	+9	+19	<1	±1
ΔR and muon $p_{\rm T}$ requirements	+3 -2	+6 -4	+1 -2	-2
Lower resonance shape			+3 -7	+31 -34

X(6900) from LHCb

• At June 2020, LHCb claimed evidence for a narrow resonance in the di-J/Psi to 4 muons spectrum at **6.9 GeV**, presumably coming from 4-charm quark state.

arXiv:2006.16957

LHCb model I: no interference	$m[X(6900)] = 6905 \pm 11 \pm 7 \text{MeV}/c^2$ $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \text{MeV}$
LHCb model II: interference	$m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$ $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \text{ MeV}$

HL-LHC

LHC / HL-LHC Plan

000

2000

1500

1000

500

0

LARGE HADRON COLLIDER

5

4

3

2

1

0

2028

SS

2030

LS4

S5

_

YETS 15 weeks

YETS 19 weeks

2032 2034 2036 2038 2040 2042

Year