
Study of lepton ID -- electron

Changhua Hao, Ligang Xia

Nanjing University

MC samples

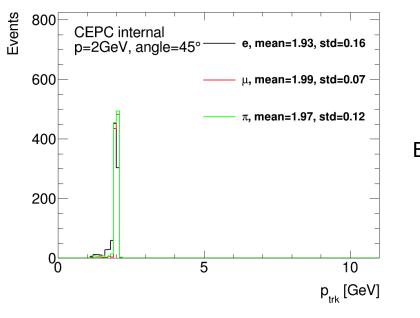
- Changhua produced MC samples using particle gun with the master (before Nov.28) + Chenguang's TofRecAlg package and the CyberPFA algorithm
- particles: electron, muon and pion
- momentum: 1 ~ 10 GeV with an interval of 1 GeV and 1000 events for each momentum
- angle: 45 degrees
- We haven't include the most recent updates from Fangyi.

No track momentum for 1 GeV particles

root [3] R					le:EcalClus_ptr
* Row				* EcalClu	

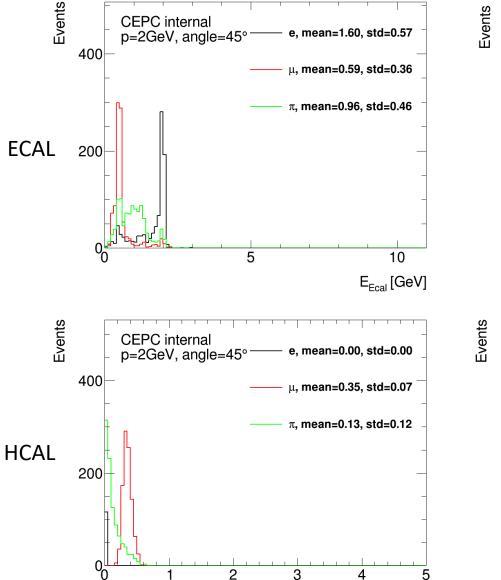
* 0	*	0 * 0	.0337420	* _	99 *
* 0	*	1 * 0	.1244335	* _	99 *
* 1	*	0 * 0	.0018956	* _	99 *
* 2	*	0 * 0	.7157256	* _	99 *
* 3	*	0 *		*	*
* 4	*	0 *		*	*
* 5	*	0 *		*	*
* 6	*	0 * 0	.2401485	* _	99 *
* 7	*	0 * 0	.9447402	* _	99 *
* 8	*	0 *		*	*
* 9	*	0 *		*	*
* 10	*	0 *		*	*
* 11	*	0 * 0	.0054692	* _	99 *
* 11	*	1 * 0	.0045299	* _	99 *
* 12	*	0 *		*	*
* 13	*	0 *		*	*
* 14	*	0 *		*	*
* 15	*	0 *		*	*
* 16	*	0 *		*	*
* 17	*	0 *		*	*
* 18	*	0 * 0	.1946679	* _	99 *
* 18	*	1 * 0	.0680412	* _	99 *
* 19	*	0 * 0	.5789478	* _	99 *
* 20	*	0 *		*	*
* 21	*	0 *		*	*

- We find "EcalClus_ptrk" is -99 in all 1000 events.
- There are two possibilities.
 - No associated track for the cluster at all
 - More than 1 associated tracks
 - will investigate further...

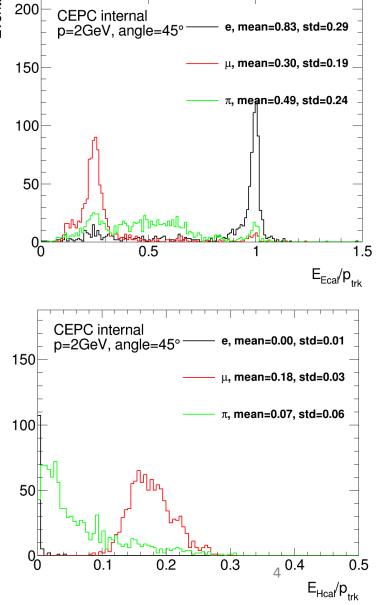

if(m_EcalClusterCol[icl]->getAssociatedTracks().size()==1){
 const Track* trk = m_EcalClusterCol[icl]->getAssociatedTracks()[0];
 m_EcalClus_pTrk.push_back(trk->getMomentum());

std::vector<TrackState> AllTrackStates = trk->getAllTrackStates(); for(int istate=0; istate<AllTrackStates.size(); istate++){ m_EcalClus_trk_tag.push_back(icl); m_EcalClus_trk_d0.push_back(AllTrackStates[istate].D0); m_EcalClus_trk_z0.push_back(AllTrackStates[istate].Z0); m_EcalClus_trk_phi.push_back(AllTrackStates[istate].Phi0); m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].phi0); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].Kappa); m_EcalClus_trk_location.push_back(AllTrackStates[istate].location);

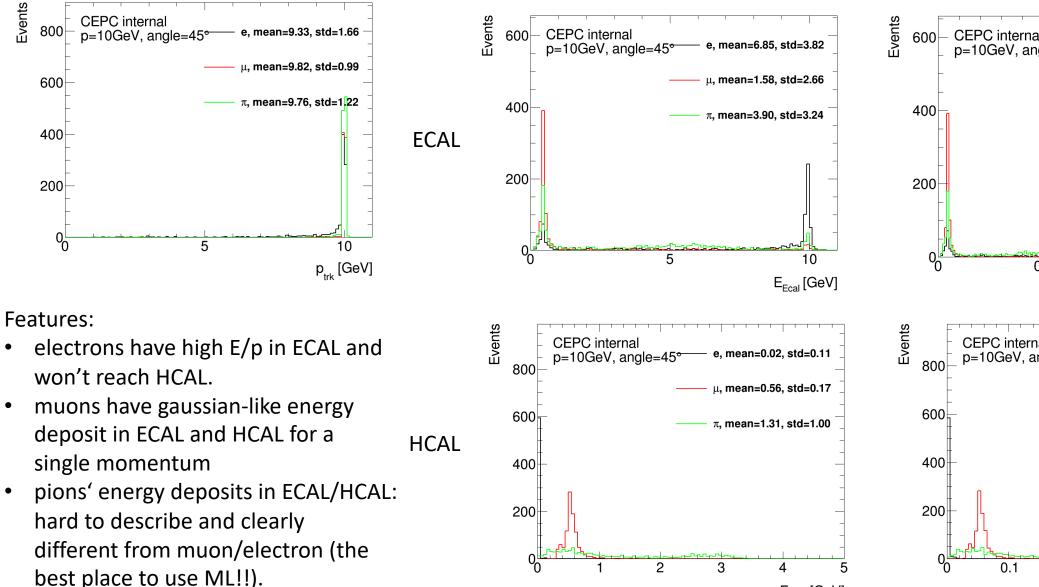
else

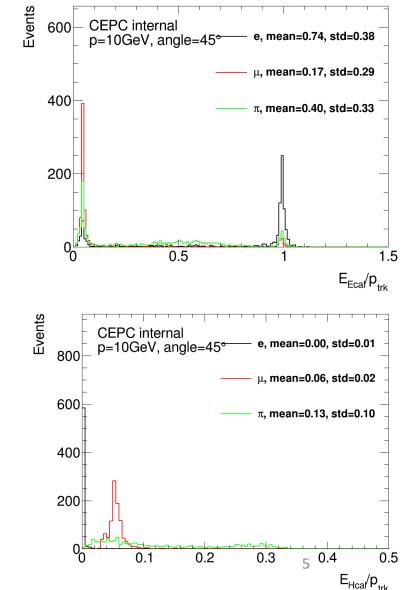

m_EcalClus_pTrk.push_back(-99);

Example: 2 GeV

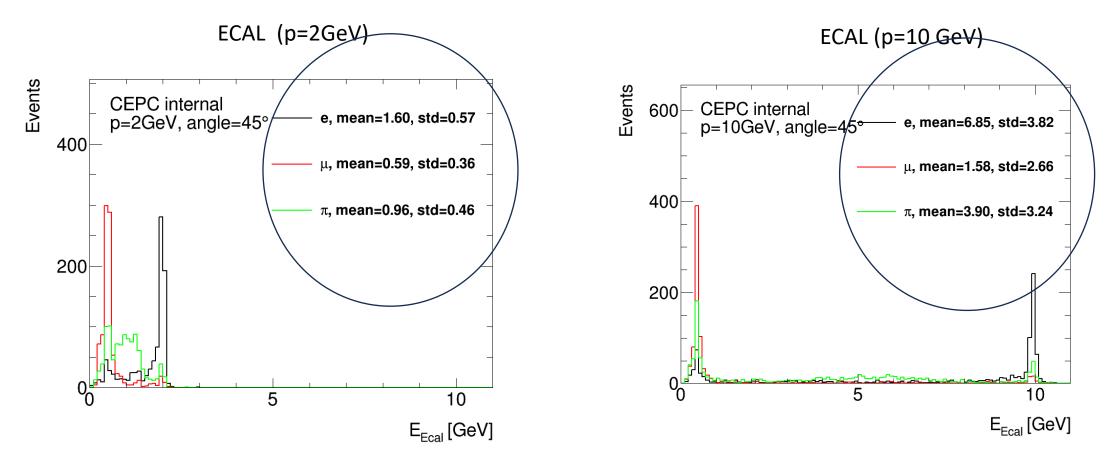


Features:

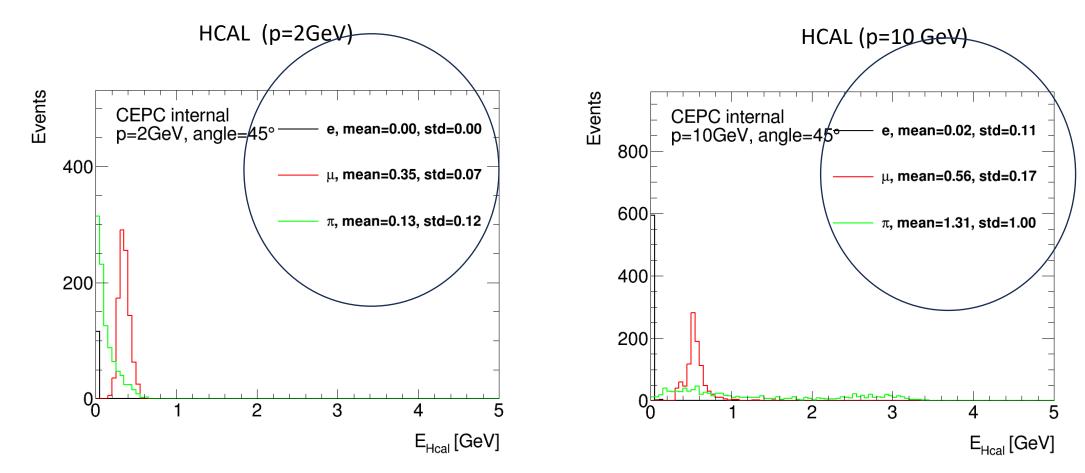

- electrons have high E/p in ECAL and won't reach HCAL.
- muons have gaussian-like energy deposit in ECAL and HCAL for a single momentum
- pions' energy deposits in ECAL/HCAL: hard to describe and clearly different from muon/electron (the best place to use ML!!).



 E_{Hcal} [GeV]


Example: 10 GeV

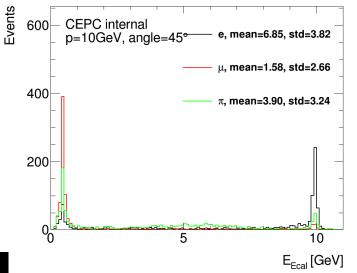
E_{Hcal} [GeV]


Comparison: 2 GeV v.s. 10 GeV

Features:

- the bigger momentum, the more energy deposit in ECAL.
- Similar Ecal energy increasement rate: 0.59 \rightarrow 1.58 for muon, 0.96 \rightarrow 3.90 for pion

Comparison: 2 GeV v.s. 10 GeV



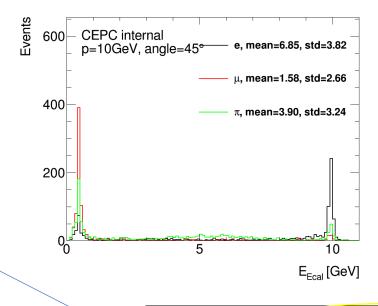
Features:

- the bigger momentum, the more energy deposit in ECAL.
- Very different Hcal energy increasement rate: 0.35 \rightarrow 0.56 for muon, 0.13 \rightarrow 1.31 for pion

Truth Matching

root [8] MCParticle -> Scan("mcPx:mcPy:mcPz")

lssue:


- some electrons have very small energy deposit in Ecal

- some pions lose all energy in Ecal.
- wrong truth matching???
- Propose to save reconstructed track px/py/pz for truth matching

*	Row * Ir	stance * mcP	x * mcPy	* mcPz *					

*	0 *	0 * 1.414164	4 * 0.0117841	* 1.4142135 *					
*	0 *	1 * -1.13966	0 * -0.837361	* 1.4142135 *			an("EcalClus_truthMC_	_pid:EcalClus_Esca	cale:EcalClus_ptrk:EcalClus_truthMC_weight:EcalClus_truthMC_px:EcalClus_truthMC_p
*	0 *		0 * 1.3583849		y:EcalClus_truthM				
*	1 *		7 * -0.338444						
*	1 *		1 * 0.8019254		* KOW * INST *****	ance ⊤ Eco **********	alcius_ * ecalcius_ * ********************		alClus_ * EcalClus_ * EcalClus_ * EcalClus_ * ***********************************
*	1 *		1 * -1.405129		* 0*	0 *	-211 * 1.4472522 *	° 2.0014236 *	1 * 0.3934340 * 1.3583849 * 1.4142135 *
*	2 *		3 * 1.4134595		* 0 *	1 *	13 * 0.7885690 *	· 2.0063059 * 0.99	9999999 * -1.139660 * -0.837361 * 1.4142135 *
*	2 *		2 * -1.373035		* 0*	2 *			0000001 * 1.4141644 * 0.0117841 * 1.4142135 *
*	2 *		5 * 1.093521		* 1 * * 1 *	0 *	13 * 0.0246001 *		1 * 1.1648671 * 0.8019254 * 1.4142135 * 9999999 * 1.1648671 * 0.8019254 * 1.4142135 *
*	2 * 3 *				* 1 *	1 * 2 *			9999999 * 1.1648671 * 0.8019254 * 1.4142135 * 0000001 * 1.3731187 * -0.338444 * 1.4142135 *
*	0		7 * 1.0048842		* 1 *	3 *	-211 * 1.4630663 *		
т Т	3 *		7 * -1.216822		* 1*	4 *	13 * 0.1924284 *	[•] 2.0423650 *	<pre>m_totE_Ecal += m_EcalClusterCol[icl]->getLongiE();</pre>
*	3 *		7 * 0.8529807		* 2*	0 *	-211 * 0.5237308 *		auto truthMap = m_EcalClusterColFiclT->aetLinkedMCP():
*	4 *		4 * -1.128977		* 2*	1 *		^c 2.0026135 * 0.99	999 for(auto iter: truthMan){
*	4 *		8 * 0.4380868		* 2 * * 3 *	2 * 0 *	13 * 0.4954095 * 13 * 0.4955662 *	\$ 1.9859817 * 0.99 \$ 2.0048124 *	<pre>m_EcalClus_truthMC_tag.push_back(icl);</pre>
*	4 *		9 * -0.268870		* 3*	1 *		· 1.9962967 * 1.00	
*	5 *		2 * 0.7144048		* 3*	2 *	-211 * 0.8898755 *		<pre>m_EcalClus_truthMC_px.push_back(iter.first.getMomentum().x);</pre>
*	5 *	1 * -0.47167	2 * -1.333238	* 1.4142135 *	* 4 *	0 *	11 * 2.0282018 *		<pre>m_EcalClus_truthMC_py.push_back(iter.first.getMomentum().y);</pre>
*	5 *	2 * 0.695733	9 * -1.231240	* 1.4142135 *	* 4 *	1 *	-211 * 0.3638647 *		<pre>m_EcalClus_truthMC_pz.push_back(iter.first.getMomentum().z);</pre>
*	6 *	0 * 1.263399	3 * 0.6354698	* 1.4142135 *	* 4 * * 5 *	2 * 0 *	13 * <u>0.4583229</u> * 11 * 1.8551514 *		<pre>m_EcalClus_truthMC_E.push_back(iter.first.getEnergy());</pre>
*	6 *	1 * 0.171765	4 * 1.4037437	* 1.4142135 *	* 5*	1 *	-211 * 0.7934654 *		<pre>m_EcalClus_truthMC_EPx.push_back(iter.first.getEndpoint().x);</pre>
*	6 *	2 * -0.79882	6 * -1.166994	* 1.4142135 *	* 5*	2 *	13 * 0.2550188 *		<pre>m_EcalClus_truthMC_EPy.push_back(iter.first.getEndpoint().y);</pre>
*	7 *	0 * 1.33660	4 * -0.462049	* 1.4142135 *	* 6*	0 *	13 * 0.5617442 *	° 1.9993442 *	<pre>m_EcalClus_truthMC_EPz.push_back(iter.first.getEndpoint().z);</pre>
*	7 *	1 * 0.683213	8 * 1.2382321	* 1.4142135_*	* 6*	1 *		1.9908685 * 0.99	
*	7 *		8 * -1.206137		* 6* * 7*	2 * 0 *	-211 * 0.4418135 * -211 * 0.6981110 *		399 }
*	8 *		5 * 0.2007579		* / * * 7 *	0 * 1 *		* 1.9944497 * * 2.0036141 * 0.99	997 }
							15 0.55+5575	2.0050141 0.55	

Truth Matching

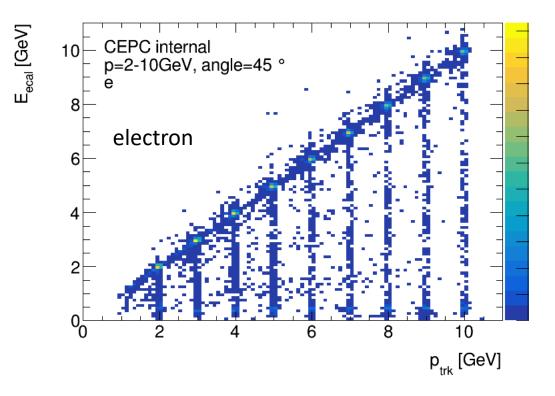
If you think it is OK, I can prepare a MR to add more variables.

Issue:

- some electrons have very small energy deposit in Ecal
- some pions lose all energy in Ecal.
- wrong truth matching???
- Propose to save reconstructed track px/py/pz for truth matching

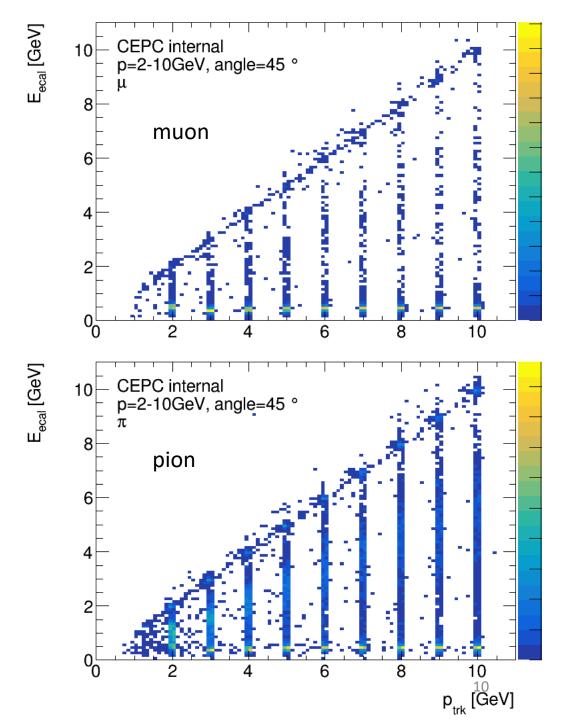
if(m_EcalClusterCol[icl]->getAssociatedTracks().size()==1){
 const Track* trk = m_EcalClusterCol[icl]->getAssociatedTracks()[0];
 m_EcalClus_pTrk.push_back(trk->getMomentum());

std::vector<TrackState> AllTrackStates = trk->getAllTrackStates(); r(int istate=0; istate<AllTrackStates.size(); istate++){ m_EcalClus_trk_tag.push_back(icl); m_EcalClus_trk_d0.push_back(AllTrackStates[istate].D0); m_EcalClus_trk_z0.push_back(AllTrackStates[istate].Z0); m_EcalClus_trk_phi.push_back(AllTrackStates[istate].Phi0); m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_location.push_back(AllTrackStates[istate].location);

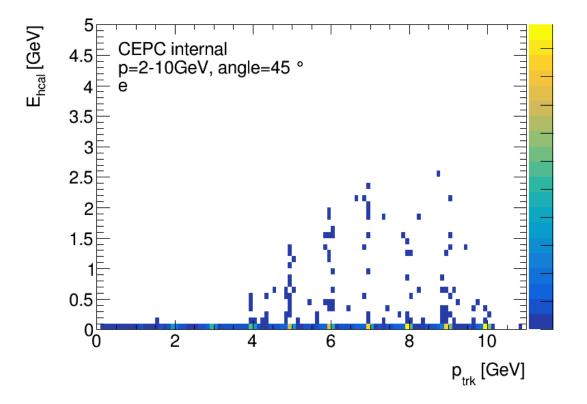

else

m_EcalClus_pTrk.push_back(-99);

m_totE_Ecal += m_EcalClusterCol[icl]->getLongiE(); auto truthMap = m_EcalClusterCol[icl]->getLinkedMCP(); for(auto iter: truthMap){

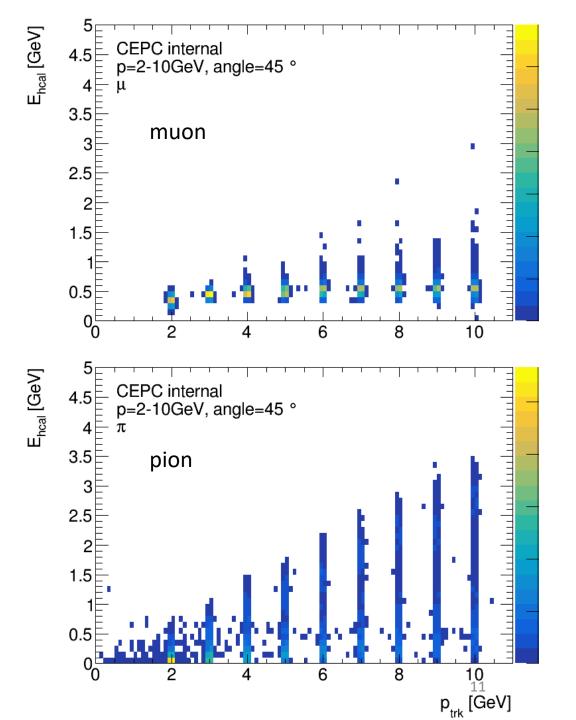

- m_EcalClus_truthMC_tag.push_back(icl);
- m_EcalClus_truthMC_pid.push_back(iter.first.getPDG());
- m_EcalClus_truthMC_px.push_back(iter.first.getMomentum().x);
- m_EcalClus_truthMC_py.push_back(iter.first.getMomentum().y);
- m_EcalClus_truthMC_pz.push_back(iter.first.getMomentum().z);
- m_EcalClus_truthMC_E.push_back(iter.first.getEnergy());
- m_EcalClus_truthMC_EPx.push_back(iter.first.getEndpoint().x);
- m_EcalClus_truthMC_EPy.push_back(iter.first.getEndpoint().y);
 m_EcalClus_truthMC_EPy_push_back(iter.first.getEndpoint().y);
- m_EcalClus_truthMC_EPz.push_back(iter.first.getEndpoint().z);
 m_EcalClus_truthMC_woight_push_back(iten_second);
- m_EcalClus_truthMC_weight.push_back(iter.second);

Ecal Energy:p(trk)



Features on Ecal energy:

- electrons will lose all energy
- muon lose the same energy
- pion lose more energy at low momentum and the same energy as muon at high momentum



Hcal Energy:p(trk)

Features on Hcal energy:

- Most of electrons will not reach Hcal.
- muons lose the same energy
- pions lose more energy than muon and lose more energy if their momentum is bigger.

Summary

- Had a look at the energy deposits in Ecal and Hcal for e/mu/pi with different momenta 1-10GeV
- A couple of issues:
 - No track momentum for 1 GeV particles
 - maybe wrong truth matching ($e \rightarrow pi$, pi-->e...)
- Work to do (hope to report on next Monday):
 - design identification criteria for electrons and muons
 - calculate the ID efficiency
 - meanwhile, fix the issues above
 - update with including Fangyi's updates