

一种用于电镜的高帧率大动态范围 像素探测器系统

<u>魏桐</u>^{1,2},邓智^{1,2},李雪明³,薛涛^{1,2},刘峻江^{1,2},杨昊彦^{1,2},李首卿³,沈铂³,闫昭屹³

2粒子技术与辐射成像教育部重点实验室

3清华大学生命科学学院

2025年7月17日

目录

1/背景介绍 2/系统设计 3/性能测试 4/总结展望

直接电子探测器用于电镜成像

口 直接电子探测器的优势

□ 位置分辨率高,良好的抗辐照能力,高动态范围,读出速度快

4维扫描透射电镜(4D-STEM)

- □ 电子以会聚束在样品上进行二维扫描, 同时在像平面使用
 - 二维探测器记录图像
- 电子束半会聚角α决定了理想情况下的成像分辨率
 相比于传统TEM/STEM的优势:
 - □ 灵活多样的后处理和图像重建方式
 - □ 空间分辨率的提升 (深亚埃量级)
- □ 对相机的挑战:
 - □大动态范围: 衍射强度分布
 - □ 高帧率(10~100 kfps):

数据获取效率

□ 典型电子能量: 80~300 keV

Ophus C, et al. Microscopy and Microanalysis, 2022

TbScO₃的CBED衍射模式(300keV, 1nA) Philipp H T, et al. Microscopy and Microanalysis, 2022

层叠成像技术/算法 (Ptychography)

□ 在4D-STEM扫描模式中,保证相邻扫描点之间存在部分空间 重叠,使用迭代算法同时重建样品和探针(电子束)的信息

- 日理论上可以实现无透镜成像,避免电磁透镜球差对分辨率的 影响
- □可使用大散射角的信息来有效提高分辨率,但是衍射强度随着角度增大而迅速下降:探测器必须具有大动态范围

用于电镜的混合式像素探测器发展现状

□ 基于X射线探测器改进或专门设计的探测器, 国外已经推出了多款商业化产品并逐步推广

□ 自主研制混合型电子探测器,是推动电镜仪器中核心部件国产化的重要突破口

性能指标	Medipix3 Quad-Merlin (瑞士Quantum Detectors)	ELA (瑞士DECTRICS)	ARINA (瑞士DECTRICS)	EMPAD-G2 (美国赛默飞)
像素大小	55 μm × 55 μm	55 μ m $ imes$ 55 μ m	100 μ m $ imes$ 100 μ m	150 μm × 150 μm
像素阵列	512 × 512(2 × 2拼接)	514 ×1030(2×4拼接)	192 × 192	128 × 128
电子能量	30-200 keV	30-300 keV	30-300 keV	60-300 keV
单像素位宽	12 bit	8或16 bit	12 bit	30 bit
工作模式	电子计数	电子计数	电子计数	能量积分
最高帧率	2 kfps	20 kfps	120 kfps@96 × 96阵列	10 kfps
探测器晶体	300 µm厚硅	450 μm厚硅	1500 µm厚CdZnTe	500 µm厚硅
计数率	8 Mcps每像素	5 Mcps每像素	64 Mcps每像素	1.1 Gcps每像素(300 keV)
量子探测效率 DQE	0.8@80 keV	0.81@80 keV 0.81@200 keV	0.71@200 keV 0.76@300 keV	0.9@80 keV 0.94@300 keV

高帧率大动态范围像素探测器系统开发历程

- 像素内积分与数字化
- 快速增益切换
- 高速电荷泵 (50 MHz)
- 采用多级缓存实现流水线工作
- 脉冲模式 (UED) : 速度和动态范围
- 连续模式 (STEM) : 功耗
- 单像素数据:
 - 11 bit Qpump
 - 1 bit gain
 - 12 bit ADC

条目	参数		
像素尺寸	150×150 μm²		
像素阵列	128×128		
工艺	GF 180 nm		
帧率	最大100 kfps(目前50 kfps)		
有效积分时间	帧周期-1.6 μs		
输入范围	55 pC/帧/像素(硅探测器中 1.25×10 ⁶ keV,100 kfps)		
增益调节	自适应调节+电荷泵		
分辨率	11+1+12 bits		
噪声(仿真值)	ENC~625 e ⁻ (硅中2.3 keV)		
探测器	200 μm p型金刚石 500 μm 硅		
功耗	10 W(脉冲模式) 6.5 W(连续模式)		

□ 高带宽(~40 Gbps),多路串行接口 □ 基于Xilinx Kintex-7 系列FPGA的专用前端数据采集卡PDX8008A1

- 在FPGA内完成数据的解串和解码并重排
- 通过QSFP光模块远距离传输

□ Xilinx U50数据加速卡将光纤传输的数据直接写入到电脑内存中 □目前可稳定工作在50 kfps采集速率下

□ 温控: TEC+水冷级联以实现真空中探测器的温度控制
□ 真空: FPC用epoxy密封实现真空馈通
□ 辐射屏蔽: Al+Pb屏蔽体
□ 扫描同步: 高速DAC及驱动器

- Tecnai F20透射电镜和JEM-2010F透射电镜
 200 keV电子(场发射)
 500 µm厚硅探测器
 相机测试内容:
 平场校正(增益和一致性)
 低剂量响应(单电子分辨)
 刃边成像(MTF和DQE)
 - 高帧率4D-STEM成像验证

安装在F20电镜上的原型相机系统

□低剂量响应:减除背景后的图像数据做能谱分析

电子剂量: 0.03 e/pixel/frame

噪声约32.4 keV,是仿真值的10倍 1. 部分电路设计问题(已定位,可改进) 2. 像素不一致性 3. 像素间串扰

□ 动态范围评估:测量不同光斑大小下的输出图像

饱和时计数率为每像素248 Mcps (39.9 pA/pixel) 50 kfps下动态范围为21000:1 更低帧率下动态范围可达128000:1

磁透镜聚焦时,不同光斑大小下总电子剂量恒定

3

□ MTF和DQE测量: 刃边成像获取调制传递函数, 平场图像获取NPS

原型探测器系统成像实验

□ 负染色蛋白酶(18 nm×8 nm)的4D-STEM数据集和重建结果

ADF图像的条纹可能由系统的共模噪声造成

原型探测器系统成像实验

□ 负染色蛋白酶(18 nm×8 nm)的4D-STEM数据集和重建结果

Normalized mean squared error: 1.053e-03

使用Ptychography重建的样片图像和探针(电子束)图像

910 kx放大倍数 450×450扫描点 5 kfps帧率, 157.6 μs曝光时间 透射盘强度: 78 e/pixel/frame

	EMPAD	EMPAD-G2	本课题
像素尺寸	150×150 μm ²	150×150 μm ²	150×150 μm ²
像素阵列	128×128	128×128	128×128
读出噪声	1.4 keV	2.6 keV	32 keV
输出位宽	16 bit Qpump	18 bit Qpump+1 bit gain	11 bit Qpump+1 bit gain
	+14 bit ADC	+14 bit ADC	+12 bit ADC
最高帧率	1.16 kfps	10 kfps	50 kfps
最大输入电流	2.3 pA@200 keV	263 pA@200 keV	39.9 pA@200 keV
动态范围	$2.0\times10^6@1~{\rm kfps}$	$1.3\times10^7@10\mathrm{kfps}$	$2.1\times10^4@50~\rm kfps$
			$1.28 imes 10^5 @10 m kfps^a$
探测器材料	500 µm 厚硅	500 µm 厚硅	500 µm 厚硅
			或200μm 厚金刚石
探测量子效率	0.93@80 keV	0.9@80 keV	
	0.94@200 keV	0.9@120 keV	0.83@200 keV
		0.94@300 keV	

本报告一款用于电子显微成像的积分式像 素读出芯片及探测器系统,其连续工作帧 率可达50 kfps,各项性能达到国际上同 类探测器先进水平。

在200 kV电镜实验中,硅探测器实测最 大输入计数率达每像素248 Mcps,单帧 动态范围最高可达128000:,单电子信噪 比为6.2:1,DQE在零频处达0.83,初步 验证了其成像应用。

^a 根据50kfps 的实验结果外推得到。

□ 基于本探测器系统进一步测试与改进

- 对本探测器系统开展更为全面的评估与验证,包括辐照效应、长期稳定性等性能的测试等。
 利用原型探测器在低剂量条件下实现亚像素分辨率和单电子计数,进一步提升信噪比,以 获得更优的成像分辨率。对原型读出芯片相关设计进行改进和优化,解决噪声偏大等问题。
 下一代高帧率电子计数型探测器的研发
 - □ 更大阵列 (单芯片256阵列,通过拼接等方式实现512甚至更大的阵列)
 - □ 通过片上数据压缩、高速串行传输等方式进一步提高帧率
 - □探索可重构式像素读出方案,适应不同应用对帧率和动态范围的需求